From plasma to plasmonics: toward sustainable and clean water production through membranes

Farah Abuhatab, Omar Khalifa, Husam Al Araj, Shadi W. Hasan

PDF(4110 KB)
PDF(4110 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 1809-1836. DOI: 10.1007/s11705-023-2339-3
REVIEW ARTICLE
REVIEW ARTICLE

From plasma to plasmonics: toward sustainable and clean water production through membranes

Author information +
History +

Abstract

The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.

Graphical abstract

Keywords

water treatment / membrane-based process / plasma treatment / plasma polymerization / plasmonic / light-to-heat conversion

Cite this article

Download citation ▾
Farah Abuhatab, Omar Khalifa, Husam Al Araj, Shadi W. Hasan. From plasma to plasmonics: toward sustainable and clean water production through membranes. Front. Chem. Sci. Eng., 2023, 17(12): 1809‒1836 https://doi.org/10.1007/s11705-023-2339-3

References

[1]
Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, Dasgupta N, Zhang W, Zhang D, Tao P. . Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636
CrossRef Google scholar
[2]
Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
CrossRef Google scholar
[3]
Chen X, Yip N Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environmental Science & Technology, 2018, 52(4): 2242–2250
CrossRef Google scholar
[4]
Jones E, Qadir M, van Vliet M T H, Smakhtin V, Kang S. The state of desalination and brine production: a global outlook. Science of the Total Environment, 2019, 657: 1343–1356
CrossRef Google scholar
[5]
Ghaffour N, Soukane S, Lee J G, Kim Y, Alpatova A. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Applied Energy, 2019, 254: 113698
CrossRef Google scholar
[6]
Filloux E, Wang J, Pidou M, Gernjak W, Yuan Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495: 276–283
CrossRef Google scholar
[7]
Guo W, Ngo H H, Li J. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34
CrossRef Google scholar
[8]
Lee S, Lee C H. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000, 34(15): 3854–3866
CrossRef Google scholar
[9]
Tang S, Wang Z, Wu Z, Zhou Q. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 2010, 178(1-3): 377–384
CrossRef Google scholar
[10]
Xu P, Bellona C, Drewes J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1-2): 111–121
CrossRef Google scholar
[11]
Yiantsios S G, Karabelas A J. The effect of colloid stability on membrane fouling. Desalination, 1998, 118(1-3): 143–152
CrossRef Google scholar
[12]
Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273
CrossRef Google scholar
[13]
Wang P, Chung T S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56
CrossRef Google scholar
[14]
Martinez-Diez L, Vázquez-González M I. Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4128–4135
CrossRef Google scholar
[15]
Gao W, Liang H, Ma J, Han M, Chen Z, Han Z, Li G. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 2011, 272(1-3): 1–8
CrossRef Google scholar
[16]
Razaqpur A G, Wang Y, Liao X, Liao Y, Wang R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Research, 2021, 201: 117299
CrossRef Google scholar
[17]
Madalosso H B, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Advanced Engineering Materials, 2021, 23(6): 2001456
CrossRef Google scholar
[18]
Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284
CrossRef Google scholar
[19]
Mansour S, Giwa A, Hasan S W. Novel graphene nanoplatelets-coated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20
CrossRef Google scholar
[20]
Kang G, Cao Y. Application and modification of poly(vinylidenefluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463: 145–165
CrossRef Google scholar
[21]
Himma N F, Prasetya N, Anisah S, Wenten I G. Superhydrophobic membrane: progress in preparation and its separation properties. Reviews in Chemical Engineering, 2019, 35(2): 211–238
CrossRef Google scholar
[22]
Cui Z, Zhang Y, Li X, Wang X, Drioli E, Wang Z, Zhao S. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47
CrossRef Google scholar
[23]
Pedram S, Mortaheb H R, Arefi-Khonsari F. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology, 2018, 39(2): 157–171
CrossRef Google scholar
[24]
Yang C, Tian M, Xie Y, Li X M, Zhao B, He T, Liu J. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2015, 482: 25–32
CrossRef Google scholar
[25]
Ekanayake U G M, Barclay M, Seo D H, Park M J, MacLeod J, O’Mullane A P, Motta N, Shon H K, Ostrikov K. Utilization of plasma in water desalination and purification. Desalination, 2021, 500: 114903
CrossRef Google scholar
[26]
Zarshenas K, Raisi A, Aroujalian A. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Advances, 2015, 5(25): 19760–19772
CrossRef Google scholar
[27]
Khulbe K C, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science, 2010, 115(2): 855–895
CrossRef Google scholar
[28]
Kim E S, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871
CrossRef Google scholar
[29]
Lai J Y, Chao Y C. Plasma-modified nylon 4 membranes for reverse osmosis desalination. Journal of Applied Polymer Science, 1990, 39(1112): 2293–2303
CrossRef Google scholar
[30]
Ohland A L, Salim V M M, Borges C P. Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93
CrossRef Google scholar
[31]
Dumée L F, Alglave H, Chaffraix T, Lin B, Magniez K, Schütz J. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363: 273–285
CrossRef Google scholar
[32]
Zhao Z, Shi S, Cao H, Li Y. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane. Desalination and Water Treatment, 2017, 89: 77–86
CrossRef Google scholar
[33]
Fu Y, Wang G, Ming X, Liu X, Hou B, Mei T, Li J, Wang J, Wang X. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130: 250–256
CrossRef Google scholar
[34]
Kong W, Wang G, Zhang M, Duan X, Hu J, Duan X. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459: 1–9
CrossRef Google scholar
[35]
De Oliveira Barauna J B F, Pereira C S, Gonçalves I A, De Oliveira Vitoriano J, Junior C A. Sodium chloride crystallization by electric discharge in brine. Materials Research, 2017, 20(suppl 2): 215–220
CrossRef Google scholar
[36]
Ekanayake U G M, Seo D H, Faershteyn K, O’Mullane A P, Shon H, MacLeod J, Golberg D, Ostrikov K. Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25: e00181
CrossRef Google scholar
[37]
Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280
CrossRef Google scholar
[38]
Johnson D C, Bzdek J P, Fahrenbruck C R, Chandler J C, Bisha B, Goodridge L D, Hybertson B M. An innovative non-thermal plasma reactor to eliminate microorganisms in water. Desalination and Water Treatment, 2016, 57(18): 8097–8108
CrossRef Google scholar
[39]
Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 2015, 65(3): 1537–1546
CrossRef Google scholar
[40]
Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 2015, 367: 37–48
CrossRef Google scholar
[41]
Kallem P, Othman I, Ouda M, Hasan S W, AlNashef I, Banat F. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 2021, 148: 813–824
CrossRef Google scholar
[42]
Alenazi N A, Hussein M A, Alamry K A, Asiri A M. Modified polyether-sulfone membrane: a mini review. Designed Monomers and Polymers, 2017, 20(1): 532–546
CrossRef Google scholar
[43]
Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, 2009, 114(1): 630–642
CrossRef Google scholar
[44]
AbdulkarimEIbrahimYHasanSNaddeoVBanatF. Novel polyethersulfone (PES) alpha-zirconium phosphate (α-ZrP) ion exchange mixed matrix membranes for effective removal of heavy metals from wastewater. PES, 10: 0 International Conference on Environmental Science and Technology 2019
[45]
Seh Z W, Liu S, Low M, Zhang S Y, Liu Z, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
CrossRef Google scholar
[46]
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
CrossRef Google scholar
[47]
Jin X, Li Y, Li W, Zheng Y, Fan Z, Han X, Wang W, Lin T, Zhu Z. Nanomaterial design for efficient solar-driven steam generation. ACS Applied Energy Materials, 2019, 2(9): 6112–6126
CrossRef Google scholar
[48]
Gao M, Zhu L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
CrossRef Google scholar
[49]
Jun Y S, Wu X, Ghim D, Jiang Q, Cao S, Singamaneni S. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019, 52(5): 1215–1225
CrossRef Google scholar
[50]
Elsheikh A H, Sharshir S W, Ahmed Ali M K, Shaibo J, Edreis E M A, Abdelhamid T, Du C, Haiou Z. Thin film technology for solar steam generation: a new dawn. Solar Energy, 2019, 177: 561–575
CrossRef Google scholar
[51]
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
CrossRef Google scholar
[52]
Said I A, Wang S, Li Q. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination. Industrial & Engineering Chemistry Research, 2019, 58(40): 18829–18835
CrossRef Google scholar
[53]
Rice D, Ghadimi S J, Barrios A C, Henry S, Walker W S, Li Q, Perreault F. Scaling resistance in nanophotonics-enabled solar membrane distillation. Environmental Science & Technology, 2020, 54(4): 2548–2555
CrossRef Google scholar
[54]
Zuo K, Wang W, Deshmukh A, Jia S, Guo H, Xin R, Elimelech M, Ajayan P M, Lou J, Li Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15(12): 1025–1032
CrossRef Google scholar
[55]
Elizalde C N B, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan S W, Arafat H A. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190: 68–76
CrossRef Google scholar
[56]
Zhang Y, Li K, Liu L, Wang K, Xiang J, Hou D, Wang J. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere, 2020, 256: 127053
CrossRef Google scholar
[57]
Giwa A, Hasan S W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology, 2020, 241: 116735
CrossRef Google scholar
[58]
Zhang Q, Xu W, Wang X. Carbon nanocomposites with high photothermal conversion efficiency. Science China Materials, 2018, 61(7): 905–914
CrossRef Google scholar
[59]
Zhang C, Liang H, Xu Z, Wang Z. Harnessing solar-driven photothermal effect toward the water-energy nexus. Advanced Science, 2019, 6(18): 1900883
CrossRef Google scholar
[60]
Yang F, Huang J, Deng L, Zhang Y, Dang G, Shao L. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 614–633
CrossRef Google scholar
[61]
Adamovich I, Agarwal S, Ahedo E, Alves L L, Baalrud S, Babaeva N, Bogaerts A, Bourdon A, Bruggeman P J, Canal C. . The 2022 plasma roadmap: low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2022, 55(37): 373001
CrossRef Google scholar
[62]
Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20(23): 5276–5284
CrossRef Google scholar
[63]
Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 2004, 46(12B): B63–B75
CrossRef Google scholar
[64]
Mesbah A, Bonzanini A D, Graves D B. Learning-based control: applications in treatment of complex substrates using non-equilibrium plasmas
[65]
Bryjak M, Gancarz I, Smolinska K. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161(1-2): 2–9
CrossRef Google scholar
[66]
Wang J, Chen X, Reis R, Chen Z, Milne N, Winther-Jensen B, Kong L, Dumée L. Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes (Basel), 2018, 8(3): 56
CrossRef Google scholar
[67]
Bryjak M, Gancarz I, Poniak G, Tylus W. Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38(4): 717–726
CrossRef Google scholar
[68]
Pal D, Neogi S, De S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion. Vacuum, 2016, 131: 293–304
CrossRef Google scholar
[69]
Jaleh B, Parvin P, Wanichapichart P, Saffar A P, Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Applied Surface Science, 2010, 257(5): 1655–1659
CrossRef Google scholar
[70]
Tompkins B D, Dennison J M, Fisher E R H. O2 plasma modification of track-etched polymer membranes for increased wettability and improved performance. Journal of Membrane Science, 2013, 428: 576–588
CrossRef Google scholar
[71]
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5(1): 84–91
CrossRef Google scholar
[72]
Wavhal D S, Fisher E R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005, 172(2): 189–205
CrossRef Google scholar
[73]
Wavhal D S, Fisher E R. Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment. Journal of Polymer Science. Part B, Polymer Physics, 2002, 40(21): 2473–2488
CrossRef Google scholar
[74]
Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114
CrossRef Google scholar
[75]
Steen M L, Jordan A C, Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. Journal of Membrane Science, 2002, 204(1-2): 341–357
CrossRef Google scholar
[76]
Yan M G, Liu L Q, Tang Z Q, Huang L, Li W, Zhou J, Gu J S, Wei X W, Yu H Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145(2): 218–224
CrossRef Google scholar
[77]
Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005, 45(1): 8–15
CrossRef Google scholar
[78]
Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science, 2005, 246(2): 203–215
CrossRef Google scholar
[79]
Kiamehr Z, Farokhi B, Hosseini S M. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with air-Ar plasma. Korean Journal of Chemical Engineering, 2021, 38(1): 114–120
CrossRef Google scholar
[80]
Mohammed S, Hegab H M, Ou R, Liu S, Ma H, Chen X, Sridhar T, Wang H. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2(1): 122–131
CrossRef Google scholar
[81]
Hegde C, Isloor A M, Padaki M, Wanichapichart P, Liangdeng Y. Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new NF membrane. Desalination, 2011, 265(1-3): 153–158
CrossRef Google scholar
[82]
Reis R, Dumée L F, Tardy B L, Dagastine R, Orbell J D, Schutz J A, Duke M C. Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific Reports, 2016, 6(1): 29206
CrossRef Google scholar
[83]
Reis R, Dumée L F, Merenda A, Orbell J D, Schütz J A, Duke M C. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403: 3–11
CrossRef Google scholar
[84]
Safarpour M, Vatanpour V, Khataee A, Zarrabi H, Gholami P, Yekavalangi M E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination, 2017, 411: 89–100
CrossRef Google scholar
[85]
Varin K J, Lin N H, Cohen Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013, 446: 472–481
CrossRef Google scholar
[86]
Reid K, Dixon M, Pelekani C, Jarvis K, Willis M, Yu Y. Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014, 335(1): 108–118
CrossRef Google scholar
[87]
Zou L, Vidalis I, Steele D, Michelmore A, Low S P, Verberk J Q J C. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369(1-2): 420–428
CrossRef Google scholar
[88]
Reis R, Duke M, Merenda A, Winther-Jensen B, Puskar L, Tobin M J, Orbell J D, Dumée L F. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537: 1–10
CrossRef Google scholar
[89]
Hirsch U, Ruehl M, Teuscher N, Heilmann A. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018, 436: 207–216
CrossRef Google scholar
[90]
Khongnakorn W, Bootluck W, Jutaporn P. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. Journal of Water Process Engineering, 2020, 38: 101633
CrossRef Google scholar
[91]
Gryta M. Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 2021, 515: 115187
CrossRef Google scholar
[92]
Butrón-García M I, Jofre-Reche J A, Martín-Martínez J M. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332: 1–11
CrossRef Google scholar
[93]
Xiao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li X M, He T. Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface. Water Research, 2019, 155: 152–161
CrossRef Google scholar
[94]
Lai C L, Liou R M, Chen S H, Huang G W, Lee K R. Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation. Desalination, 2011, 267(2-3): 184–192
CrossRef Google scholar
[95]
Kong Y, Lin X, Wu Y, Chen J, Xu J. Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. Journal of Applied Polymer Science, 1992, 46(2): 191–199
CrossRef Google scholar
[96]
Wei X, Zhao B, Li X M, Wang Z, He B Q, He T, Jiang B. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 2012, 407–408: 164–175
CrossRef Google scholar
[97]
Yang C, Li X M, Gilron J, Kong D, Yin Y, Oren Y, Linder C, He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456: 155–161
CrossRef Google scholar
[98]
Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114
CrossRef Google scholar
[99]
Woo Y C, Chen Y, Tijing L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242
CrossRef Google scholar
[100]
Liu L, Shen F, Chen X, Luo J, Su Y, Wu H, Wan Y. A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dipping and grafting. Journal of Membrane Science, 2016, 499: 544–554
CrossRef Google scholar
[101]
Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 2015, 14(6): 567–576
CrossRef Google scholar
[102]
Lin Y, Xu H, Shan X, Di Y, Zhao A, Hu Y, Gan Z. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(33): 19203–19227
CrossRef Google scholar
[103]
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
CrossRef Google scholar
[104]
Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications. Materials Today, 2013, 16(10): 375–386
CrossRef Google scholar
[105]
Gong B, Yang H, Wu S, Xiong G, Yan J, Cen K, Bo Z, Ostrikov K. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Letters, 2019, 11(1): 1–14
CrossRef Google scholar
[106]
Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182: 340–347
CrossRef Google scholar
[107]
Rider A E, Ostrikov K, Furman S A. Plasmas meet plasmonics: everything old is new again. European Physical Journal D, 2012, 66(9): 1–19
CrossRef Google scholar
[108]
Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Advanced Materials, 2022, 2107351(26): 1–31
CrossRef Google scholar
[109]
Zoubos H, Koutsokeras L E, Anagnostopoulos D F, Lidorikis E, Kalogirou S A, Wildes A R, Kelires P C, Patsalas P. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Solar Energy Materials and Solar Cells, 2013, 117: 350–356
CrossRef Google scholar
[110]
Du M, Tang G H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137: 393–400
CrossRef Google scholar
[111]
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
CrossRef Google scholar
[112]
NaikGKimJKinseyNeds. Boltasseva A. Chapter 6—Alternative Plasmonic Materials. North-Holland: Handbook of Surface Science, 2014, 189–221
[113]
Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294
CrossRef Google scholar
[114]
Liu H, Chen C, Wen H, Guo R, Williams N A, Wang B, Chen F, Hu L. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18839–18846
CrossRef Google scholar
[115]
Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730
CrossRef Google scholar
[116]
Fuzil N S, Othman N H, Alias N H, Marpani F, Othman Mohd H D, Ismail A F, Lau W J, Li K, Kusworo T D, Ichinose I. . A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production. Desalination, 2021, 517: 115259
CrossRef Google scholar
[117]
Tao F, Zhang Y, Yin K, Cao S, Chang X, Lei Y, Wang D, Fan R, Dong L, Yin Y. . A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy & Fuels, 2018, 2(12): 2762–2769
CrossRef Google scholar
[118]
Xu J, Xu F, Qian M, Li Z, Sun P, Hong Z, Huang F. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy, 2018, 53: 425–431
CrossRef Google scholar
[119]
Tao F, Zhang Y, Zhang F, Wang K, Chang X, An Y, Dong L, Yin Y. From CdS to Cu7S4 nanorods via a cation exchange route and their applications: environmental pollution removal, photothermal conversion and light-induced water evaporation. ChemistrySelect, 2017, 2(10): 3039–3048
CrossRef Google scholar
[120]
Li X, Wang D, Zhang Y, Liu L, Wang W. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025–3032
CrossRef Google scholar
[121]
IshiiSChenKSugavaneshwarR POkuyamaHDaoT DShindeS LKaurMKitajimaMNagaoT. Efficient absorption of sunlight using resonant nanoparticles for solar heat applications. Materials Nanoarchitectonics, 2018, 241–253
[122]
Lu Q, Yang Y, Feng J, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL, 2019, 3(2): 1–8
CrossRef Google scholar
[123]
AnsoriBGogotsiY. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Berlin: Springer, 2019, 13–15
[124]
Lei J C, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015, 10(3): 276–286
CrossRef Google scholar
[125]
Zhang Q, Yi G, Fu Z, Yu H, Chen S, Quan X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196–13207
CrossRef Google scholar
[126]
Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 2016, 8(35): 23412–23418
CrossRef Google scholar
[127]
Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157: 35–46
CrossRef Google scholar
[128]
Zhu L, Gao M, Peh C K N, Ho G W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 2019, 57: 507–518
CrossRef Google scholar
[129]
Lalisse A, Tessier G, Plain J, Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. Journal of Physical Chemistry C, 2015, 119(45): 25518–25528
CrossRef Google scholar
[130]
Leong K Y, Ong H C, Amer N H, Norazrina M J, Risby M S, Ku Ahmad K Z. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable & Sustainable Energy Reviews, 2016, 53: 1092–1105
CrossRef Google scholar
[131]
Zhang H, Chen H J, Du X, Wen D. Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100: 141–147
CrossRef Google scholar
[132]
Amjad M, Raza G, Xin Y, Pervaiz S, Xu J, Du X, Wen D. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206: 393–400
CrossRef Google scholar
[133]
Chen M, He Y, Zhu J, Shuai Y, Jiang B, Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115: 85–94
CrossRef Google scholar
[134]
Zhang Y, Liu L, Li K, Hou D, Wang J. Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere, 2018, 212: 554–562
CrossRef Google scholar
[135]
Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 2018, 212: 809–819
CrossRef Google scholar
[136]
Zhu G, Wang L, Bing N, Xie H, Yu W. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy, 2019, 183: 747–755
CrossRef Google scholar
[137]
Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224: 103–115
CrossRef Google scholar
[138]
Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213
CrossRef Google scholar
[139]
Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, Xie H, Li Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Solar Energy, 2019, 184: 240–248
CrossRef Google scholar
[140]
Lee B J, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009
CrossRef Google scholar
[141]
Chen N, Ma H, Li Y, Cheng J, Zhang C, Wu D, Zhu H. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Solar Energy Materials and Solar Cells, 2017, 162: 83–92
CrossRef Google scholar
[142]
Menbari A, Alemrajabi A A, Ghayeb Y. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management, 2016, 108: 501–510
CrossRef Google scholar
[143]
Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1431–1438
CrossRef Google scholar
[144]
Jeon J, Park S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256
CrossRef Google scholar
[145]
Tao F, Green M, Garcia A V, Xiao T, Van Tran A T, Zhang Y, Yin Y, Chen X. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84
CrossRef Google scholar
[146]
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
CrossRef Google scholar
[147]
Wu S L, Chen H, Wang H L, Chen X, Yang H C, Darling S B. Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science. Water Research & Technology, 2021, 7(1): 24–39
CrossRef Google scholar
[148]
Politano A, Di Profio G, Fontananova E, Sanna V, Cupolillo A, Curcio E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 2019, 451: 192–199
CrossRef Google scholar
[149]
Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759
CrossRef Google scholar
[150]
Hong S, Sycks D, Chan H F, Lin S, Lopez G P, Guilak F, Leong K W, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 2015, 27(27): 4035–4040
CrossRef Google scholar
[151]
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504
CrossRef Google scholar
[152]
Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307–6312
CrossRef Google scholar
[153]
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
CrossRef Google scholar
[154]
Ghim D, Wu X, Suazo M, Jun Y S. Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation. Nano Energy, 2021, 80: 105444
CrossRef Google scholar
[155]
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
CrossRef Google scholar
[156]
Chen M, Wu Y, Song W, Mo Y, Lin X, He Q, Guo B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10(13): 6186–6193
CrossRef Google scholar
[157]
Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination: via enhanced localized heating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 20044–20052
CrossRef Google scholar
[158]
Liu C, Huang J, Hsiung C E, Tian Y, Wang J, Han Y, Fratalocchi A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017, 1(1-2): 1600013
CrossRef Google scholar
[159]
Yang Y, Yang X, Fu L, Zou M, Cao A, Du Y, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171
CrossRef Google scholar
[160]
Chen J, Feng J, Li Z, Xu P, Wang X, Yin W, Wang M, Ge X, Yin Y. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Letters, 2019, 19(1): 400–407
CrossRef Google scholar
[161]
Avci A H, Santoro S, Politano A, Propato M, Micieli M, Aquino M, Wenjuan Z, Curcio E. Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion. Chemical Engineering and Processing, 2021, 164: 108382
CrossRef Google scholar
[162]
Ye H, Li X, Deng L, Li P, Zhang T, Wang X, Hsiao B S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Industrial & Engineering Chemistry Research, 2019, 58(8): 3269–3281
CrossRef Google scholar
[163]
Wu D, Zhao C, Xu Y, Zhang X, Yang L, Zhang Y, Gao Z, Song Y Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Applied Nano Materials, 2020, 3(11): 10895–10904
CrossRef Google scholar
[164]
Lin Y, Chen Z, Fang L, Meng M, Liu Z, Di Y, Cai W, Huang S, Gan Z. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2018, 30(1): 015402
CrossRef Google scholar
[165]
Zhang L, Xing J, Wen X, Chai J, Wang S, Xiong Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849
CrossRef Google scholar
[166]
Shang M, Li N, Zhang S, Zhao T, Zhang C, Liu C, Li H, Wang Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 2018, 1(1): 56–61
CrossRef Google scholar
[167]
Xu Z, Rao N, Tang C Y, Law W C. Seawater desalination by interfacial solar vapor generation method using plasmonic heating nanocomposites. Micromachines, 2020, 11(9): 867
CrossRef Google scholar
[168]
Guo Z, Ming X, Wang G, Hou B, Liu X, Mei T, Li J, Wang J, Wang X. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33(2): 25008
CrossRef Google scholar
[169]
Shi Y, Li R, Shi L, Ahmed E, Jin Y, Wang P. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation. Advanced Sustainable Systems, 2018, 2: 1–11
[170]
Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523–8528
CrossRef Google scholar
[171]
Bian Y, Tang K, Xu Z, Ma J, Shen Y, Hao L, Chen X, Nie K, Li J, Ma T. . Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33(22): 3857–3869
CrossRef Google scholar
[172]
Traver E, Karaballi R A, Monfared Y E, Daurie H, Gagnon G A, Dasog M. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Applied Nano Materials, 2020, 3(3): 2787–2794
CrossRef Google scholar
[173]
KaurMIshiiSShindeS LNagaoT. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Optics InfoBase Conference Papers, 2018, Part F125-: 1–8
[174]
Farid M U, Kharraz J A, Wang P, An A K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. Journal of Cleaner Production, 2020, 271: 122684
CrossRef Google scholar
[175]
Farid M U, Kharraz J A, An A K. Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3805–3815
CrossRef Google scholar
[176]
Chala T F, Wu C M, Chou M H, Guo Z L. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces, 2018, 10(34): 28955–28962
CrossRef Google scholar
[177]
Cheng X, Bai X, Yang J, Zhu X M, Wang J. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination. ACS Applied Materials & Interfaces, 2022, 14(25): 28769–28780
CrossRef Google scholar
[178]
Li G, Law W C, Chan K C. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20(16): 3689–3695
CrossRef Google scholar
[179]
Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, Yin X, Que W. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16196–16204
CrossRef Google scholar
[180]
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Applied Materials & Interfaces, 2019, 11(40): 36589–36597
CrossRef Google scholar
[181]
Wang L, Shang J, Yang G, Ma Y, Kou L, Liu D, Yin H, Hegh D, Razal J, Lei W. 2D higher-metal nitride nanosheets for solar steam generation. Small, 2022, 2201770(28): 2–9
CrossRef Google scholar
[182]
Behera S, Kim C, Kim K. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure-graphene oxide-gold nanoparticle composite. Langmuir, 2020, 36(42): 12494–12503
CrossRef Google scholar
[183]
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
CrossRef Google scholar
[184]
Huang J, He Y, Wang L, Huang Y, Jiang B. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132: 452–459
CrossRef Google scholar
[185]
Goharshadi K, Sajjadi S A, Goharshadi E K, Mehrkhah R. Highly efficient plasmonic wood/Ag/Pd photoabsorber in interfacial solar steam generation. Materials Research Bulletin, 2022, 154: 111916
CrossRef Google scholar
[186]
Zhu L, Li J, Zhong L, Zhang L, Zhou M, Chen H, Hou Y, Zheng Y. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100: 107441
CrossRef Google scholar
[187]
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
CrossRef Google scholar
[188]
Awad F S, Kiriarachchi H D, Abouzeid K M, Özgür Ü, El-Shall M S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials, 2018, 1(3): 976–985
CrossRef Google scholar
[189]
Yi L, Ci S, Luo S, Shao P, Hou Y, Wen Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41: 600–608
CrossRef Google scholar
[190]
Yang Y, Han Y, Zhao J, Que W. 2D/1D MXene/MWCNT hybrid membrane-based evaporator for solar desalination. Materials (Basel), 2022, 15(3): 1–7
CrossRef Google scholar
[191]
Chen J, Pei J, Zhao H. Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation. Journal of Physical Chemistry C, 2021, 125(35): 19345–19352
CrossRef Google scholar
[192]
MontgomeryD C. Design and Analysis of Experiments. 9th ed. United States: John Wiley & Sons, 2017
[193]
Lau W J, Gray S, Matsuura T, Emadzadeh D, Chen J P, Ismail A F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324
CrossRef Google scholar
[194]
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806
CrossRef Google scholar
[195]
Zha S, Gusnawan P, Lin J, Zhang G, Liu N, Yu J. Integrating a novel TS-af-HFM NF process for portable treatment of oilfield produced water. Chemical Engineering Journal, 2017, 311: 203–208
CrossRef Google scholar
[196]
Harpale A, Chew H B. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling. Carbon, 2017, 117: 82–91
CrossRef Google scholar
[197]
Liu L, Xie D, Wu M, Yang X, Xu Z, Wang W, Bai X, Wang E. Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50(8): 3039–3044
CrossRef Google scholar
[198]
Huang L, Pei J, Jiang H, Hu X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination, 2018, 442: 1–7
CrossRef Google scholar
[199]
Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat H A, Curcio E. Photothermal membrane distillation for seawater desalination. Advanced Materials, 2017, 29(2): 1603504
CrossRef Google scholar
[200]
Tan Y Z, Wang H, Han L, Tanis-Kanbur M B, Pranav M V, Chew J W. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018, 565: 254–265
CrossRef Google scholar
[201]
Hou B, Cui Z, Zhu X, Liu X, Wang G, Wang J, Mei T, Li J, Wang X. Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222: 159–164
CrossRef Google scholar
[202]
Zuo G, Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447: 26–35
CrossRef Google scholar
[203]
Reis R, Dumée L F, He L, She F, Orbell J D, Winther-Jensen B, Duke M C. Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion. ACS Applied Materials & Interfaces, 2015, 7(27): 14644–14653
CrossRef Google scholar
[204]
Abdel-Wahed M S, Hefny M M, Abd-Elmaksoud S, El-Liethy M A, Kamel M A, El-Kalliny A S, Hamza I A. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles. Scientific Reports, 2022, 12(1): 1–14
CrossRef Google scholar
[205]
Wu S, Xiong G, Yang H, Gong B, Tian Y, Xu C, Wang Y, Fisher T, Yan J, Cen K. . Multifunctional solar waterways: plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Advanced Energy Materials, 2019, 9(30): 1–11
CrossRef Google scholar
[206]
Khoo Y S, Lau W J, Liang Y Y, Karaman M, Gürsoy M, Lai G S, Ismail A F. Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9(3): 105227
CrossRef Google scholar
[207]
Liu F, Wang L, Li D, Liu Q, Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9(61): 35417–35428
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank the Center for Membranes and Advanced Water Technology (CMAT) at Khalifa University for the support (Award No. RC2-2018-009).

RIGHTS & PERMISSIONS

2023 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4110 KB)

Accesses

Citations

Detail

Sections
Recommended

/