Frontiers of Chemical Science and Engineering >
Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance
Received date: 20 Mar 2023
Accepted date: 21 Apr 2023
Published date: 15 Oct 2023
Copyright
Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.
Pengcheng Deng , Shiyi Feng , Canhui Lu , Zehang Zhou . Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1460 -1469 . DOI: 10.1007/s11705-023-2335-7
1 |
Song P, Ma Z, Qiu H, Ru Y, Gu J. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters, 2022, 14(1): 51
|
2 |
Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic interference shielding polymers and nanocomposites—a review. Polymer Reviews (Philadelphia, Pa.), 2019, 59(2): 280–337
|
3 |
Zhang L, Chen Y, Liu Q, Deng W, Yue Y, Meng F. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111: 57–65
|
4 |
Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Applied Materials & Interfaces, 2021, 13(50): 60478–60488
|
5 |
Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417
|
6 |
Zhang Y, Kong J, Gu J. New generation electromagnetic materials: harvesting instead of dissipation solo. Science Bulletin, 2022, 67(14): 1413–1415
|
7 |
Li J, Chen J, Wang H, Xiao X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem, 2021, 8(4): 648–655
|
8 |
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098
|
9 |
Zhang Y Z, El-Demellawi J K, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef H N. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49(20): 7229–7251
|
10 |
Zhang Y, Gong M, Wan P. MXene hydrogel for wearable electronics. Matter, 2021, 4(8): 2655–2658
|
11 |
Sun L, Sun J, Zhai S, Dong T, Yang H, Tan Y, Fang X, Liu C, Deng W Q, Wu H. Homologous MXene-derived electrodes for potassium-ion full batteries. Advanced Energy Materials, 2022, 12(23): 2200113
|
12 |
Kong W, Deng J, Li L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14674–14691
|
13 |
Wang Z, Zhou Z, Wang S, Yao X, Han X, Cao W, Pu J. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites. Part B, Engineering, 2022, 239: 109954
|
14 |
Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15(7): 11396–11405
|
15 |
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
|
16 |
Liu Y, Wu N, Zheng S, Yang Y, Li B, Liu W, Liu J, Zeng Z. From MXene trash to ultraflexible composites for multifunctional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022, 14(44): 50120–50128
|
17 |
Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J. A mini-review of MXene porous films: preparation, mechanism and application. Journal of Materials Science and Technology, 2022, 103: 42–49
|
18 |
Zhang Y, Ma Z, Ruan K, Gu J. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601–5609
|
19 |
Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D, Lee H M, Koo C M, Kim S O. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722–11732
|
20 |
Liu Z, Zhang Y, Zhang H B, Dai Y, Liu J, Li X, Yu Z Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1673–1678
|
21 |
Zhang Y, Ruan K, Zhou K, Gu J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642
|
22 |
Qi C Z, Wu X, Liu J, Luo X J, Zhang H B, Yu Z Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. Journal of Materials Science and Technology, 2023, 135: 213–220
|
23 |
Jiao C, Deng Z, Min P, Lai J, Gou Q, Gao R, Yu Z Z, Zhang H B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198: 179–187
|
24 |
ZhangY GHuangL ZYuanQMaM G. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2022, online, https://doi.org/10.1007/s11705-022-2251-2
|
25 |
Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 2021, 5(12): 2100889
|
26 |
Cao W T, Chen F F, Zhu Y J, Zhang Y G, Jiang Y Y, Ma M G, Chen F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593
|
27 |
Feng S, Zhan Z, Yi Y, Zhou Z, Lu C. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Composites. Part A, Applied Science and Manufacturing, 2022, 157: 106907
|
28 |
Chen S, Yue N, Cui M, Penkova A, Huang R, Qi W, He Z, Su R. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydrate Polymers, 2022, 294: 119803
|
29 |
Van Hai L, Zhai L, Kim H C, Kim J W, Choi E S, Kim J. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70
|
30 |
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054
|
31 |
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synthetic Metals, 2011, 161(15–16): 1522–1526
|
32 |
Xu L Q, Yang W J, Neoh K G, Kang E T, Fu G D. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 2010, 43(20): 8336–8339
|
33 |
Wan S, Li X, Wang Y, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L, Cheng Q. Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154–27161
|
34 |
Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983
|
35 |
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
|
36 |
Chen H, Wen Y, Qi Y, Zhao Q, Qu L, Li C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Advanced Functional Materials, 2020, 30(5): 1906996
|
37 |
Ren H P, Song Y H, Hao Q Q, Liu Z W, Wang W, Chen J G, Jiang J, Liu Z T, Hao Z, Lu J. Highly active and stable Ni–SiO2 prepared by a complex-decomposition method for pressurized carbon dioxide reforming of methane. Industrial & Engineering Chemistry Research, 2014, 53(49): 19077–19086
|
38 |
Ashok J, Kawi S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis, 2014, 4(1): 289–301
|
39 |
Luo S, Xiang T, Dong J, Su F, Ji Y, Liu C, Feng Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129: 127–134
|
40 |
Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5(90): 73416–73423
|
41 |
Han M, Gogotsi Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17–25
|
42 |
Qian K, Wu H, Fang J, Yang Y, Miao M, Cao S, Shi L, Feng X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254: 117325
|
43 |
Zhou J, Thaiboonrod S, Fang J, Cao S, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15(9): 8536–8545
|
44 |
Song Q, Chen B, Zhou Z, Lu C. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64(6): 1437–1448
|
45 |
Zhan Z, Song Q, Zhou Z, Lu C. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829
|
46 |
Zhou B, Zhang Z, Li Y, Han G, Feng Y, Wang B, Zhang D, Ma J, Liu C. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and Mxene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905
|
47 |
Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Applied Materials & Interfaces, 2019, 11(10): 10198–10207
|
48 |
Zhang H, Sun X, Heng Z, Chen Y, Zou H, Liang M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152–17160
|
49 |
Li Y, Chen Y, Liu Y, Zhang C, Qi H. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274: 118652
|
/
〈 |
|
〉 |