RESEARCH ARTICLE

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance

  • Pengcheng Deng ,
  • Shiyi Feng ,
  • Canhui Lu ,
  • Zehang Zhou
Expand
  • State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
zzh303@scu.edu.cn

Received date: 20 Mar 2023

Accepted date: 21 Apr 2023

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press

Abstract

Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

Cite this article

Pengcheng Deng , Shiyi Feng , Canhui Lu , Zehang Zhou . Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1460 -1469 . DOI: 10.1007/s11705-023-2335-7

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant No. 2022YFG0291), State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2022-3-20), and the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University (Grant No. 2020SCUNG203). Authors appreciate Dr. Guiping Yuan from Analytical & Testing Center, Sichuan University for the TEM analysis.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2335-7 is accessible for authorized users.
1
Song P, Ma Z, Qiu H, Ru Y, Gu J. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters, 2022, 14(1): 51

DOI

2
Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic interference shielding polymers and nanocomposites—a review. Polymer Reviews (Philadelphia, Pa.), 2019, 59(2): 280–337

DOI

3
Zhang L, Chen Y, Liu Q, Deng W, Yue Y, Meng F. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111: 57–65

DOI

4
Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Applied Materials & Interfaces, 2021, 13(50): 60478–60488

DOI

5
Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417

DOI

6
Zhang Y, Kong J, Gu J. New generation electromagnetic materials: harvesting instead of dissipation solo. Science Bulletin, 2022, 67(14): 1413–1415

DOI

7
Li J, Chen J, Wang H, Xiao X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem, 2021, 8(4): 648–655

DOI

8
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098

DOI

9
Zhang Y Z, El-Demellawi J K, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef H N. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49(20): 7229–7251

DOI

10
Zhang Y, Gong M, Wan P. MXene hydrogel for wearable electronics. Matter, 2021, 4(8): 2655–2658

DOI

11
Sun L, Sun J, Zhai S, Dong T, Yang H, Tan Y, Fang X, Liu C, Deng W Q, Wu H. Homologous MXene-derived electrodes for potassium-ion full batteries. Advanced Energy Materials, 2022, 12(23): 2200113

DOI

12
Kong W, Deng J, Li L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14674–14691

DOI

13
Wang Z, Zhou Z, Wang S, Yao X, Han X, Cao W, Pu J. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites. Part B, Engineering, 2022, 239: 109954

DOI

14
Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15(7): 11396–11405

DOI

15
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140

DOI

16
Liu Y, Wu N, Zheng S, Yang Y, Li B, Liu W, Liu J, Zeng Z. From MXene trash to ultraflexible composites for multifunctional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022, 14(44): 50120–50128

DOI

17
Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J. A mini-review of MXene porous films: preparation, mechanism and application. Journal of Materials Science and Technology, 2022, 103: 42–49

DOI

18
Zhang Y, Ma Z, Ruan K, Gu J. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601–5609

DOI

19
Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D, Lee H M, Koo C M, Kim S O. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722–11732

DOI

20
Liu Z, Zhang Y, Zhang H B, Dai Y, Liu J, Li X, Yu Z Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1673–1678

DOI

21
Zhang Y, Ruan K, Zhou K, Gu J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642

DOI

22
Qi C Z, Wu X, Liu J, Luo X J, Zhang H B, Yu Z Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. Journal of Materials Science and Technology, 2023, 135: 213–220

DOI

23
Jiao C, Deng Z, Min P, Lai J, Gou Q, Gao R, Yu Z Z, Zhang H B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198: 179–187

DOI

24
ZhangY GHuangL ZYuanQMaM G. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2022, online, https://doi.org/10.1007/s11705-022-2251-2

25
Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 2021, 5(12): 2100889

DOI

26
Cao W T, Chen F F, Zhu Y J, Zhang Y G, Jiang Y Y, Ma M G, Chen F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593

DOI

27
Feng S, Zhan Z, Yi Y, Zhou Z, Lu C. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Composites. Part A, Applied Science and Manufacturing, 2022, 157: 106907

DOI

28
Chen S, Yue N, Cui M, Penkova A, Huang R, Qi W, He Z, Su R. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydrate Polymers, 2022, 294: 119803

DOI

29
Van Hai L, Zhai L, Kim H C, Kim J W, Choi E S, Kim J. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70

DOI

30
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054

DOI

31
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synthetic Metals, 2011, 161(15–16): 1522–1526

DOI

32
Xu L Q, Yang W J, Neoh K G, Kang E T, Fu G D. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 2010, 43(20): 8336–8339

DOI

33
Wan S, Li X, Wang Y, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L, Cheng Q. Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154–27161

DOI

34
Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983

DOI

35
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81

DOI

36
Chen H, Wen Y, Qi Y, Zhao Q, Qu L, Li C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Advanced Functional Materials, 2020, 30(5): 1906996

DOI

37
Ren H P, Song Y H, Hao Q Q, Liu Z W, Wang W, Chen J G, Jiang J, Liu Z T, Hao Z, Lu J. Highly active and stable Ni–SiO2 prepared by a complex-decomposition method for pressurized carbon dioxide reforming of methane. Industrial & Engineering Chemistry Research, 2014, 53(49): 19077–19086

DOI

38
Ashok J, Kawi S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis, 2014, 4(1): 289–301

DOI

39
Luo S, Xiang T, Dong J, Su F, Ji Y, Liu C, Feng Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129: 127–134

DOI

40
Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5(90): 73416–73423

DOI

41
Han M, Gogotsi Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17–25

DOI

42
Qian K, Wu H, Fang J, Yang Y, Miao M, Cao S, Shi L, Feng X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254: 117325

DOI

43
Zhou J, Thaiboonrod S, Fang J, Cao S, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15(9): 8536–8545

DOI

44
Song Q, Chen B, Zhou Z, Lu C. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64(6): 1437–1448

DOI

45
Zhan Z, Song Q, Zhou Z, Lu C. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829

DOI

46
Zhou B, Zhang Z, Li Y, Han G, Feng Y, Wang B, Zhang D, Ma J, Liu C. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and Mxene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905

DOI

47
Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Applied Materials & Interfaces, 2019, 11(10): 10198–10207

DOI

48
Zhang H, Sun X, Heng Z, Chen Y, Zou H, Liang M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152–17160

DOI

49
Li Y, Chen Y, Liu Y, Zhang C, Qi H. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274: 118652

DOI

Outlines

/