Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance

Pengcheng Deng, Shiyi Feng, Canhui Lu, Zehang Zhou

PDF(6420 KB)
PDF(6420 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (10) : 1460-1469. DOI: 10.1007/s11705-023-2335-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance

Author information +
History +

Abstract

Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

Graphical abstract

Keywords

Ti3C2Tx MXene / double crosslinking / mechanical properties / EMI shielding performance

Cite this article

Download citation ▾
Pengcheng Deng, Shiyi Feng, Canhui Lu, Zehang Zhou. Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance. Front. Chem. Sci. Eng., 2023, 17(10): 1460‒1469 https://doi.org/10.1007/s11705-023-2335-7

References

[1]
Song P, Ma Z, Qiu H, Ru Y, Gu J. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters, 2022, 14(1): 51
CrossRef Google scholar
[2]
Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic interference shielding polymers and nanocomposites—a review. Polymer Reviews (Philadelphia, Pa.), 2019, 59(2): 280–337
CrossRef Google scholar
[3]
Zhang L, Chen Y, Liu Q, Deng W, Yue Y, Meng F. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111: 57–65
CrossRef Google scholar
[4]
Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Applied Materials & Interfaces, 2021, 13(50): 60478–60488
CrossRef Google scholar
[5]
Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417
CrossRef Google scholar
[6]
Zhang Y, Kong J, Gu J. New generation electromagnetic materials: harvesting instead of dissipation solo. Science Bulletin, 2022, 67(14): 1413–1415
CrossRef Google scholar
[7]
Li J, Chen J, Wang H, Xiao X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem, 2021, 8(4): 648–655
CrossRef Google scholar
[8]
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098
CrossRef Google scholar
[9]
Zhang Y Z, El-Demellawi J K, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef H N. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49(20): 7229–7251
CrossRef Google scholar
[10]
Zhang Y, Gong M, Wan P. MXene hydrogel for wearable electronics. Matter, 2021, 4(8): 2655–2658
CrossRef Google scholar
[11]
Sun L, Sun J, Zhai S, Dong T, Yang H, Tan Y, Fang X, Liu C, Deng W Q, Wu H. Homologous MXene-derived electrodes for potassium-ion full batteries. Advanced Energy Materials, 2022, 12(23): 2200113
CrossRef Google scholar
[12]
Kong W, Deng J, Li L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14674–14691
CrossRef Google scholar
[13]
Wang Z, Zhou Z, Wang S, Yao X, Han X, Cao W, Pu J. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites. Part B, Engineering, 2022, 239: 109954
CrossRef Google scholar
[14]
Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15(7): 11396–11405
CrossRef Google scholar
[15]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
CrossRef Google scholar
[16]
Liu Y, Wu N, Zheng S, Yang Y, Li B, Liu W, Liu J, Zeng Z. From MXene trash to ultraflexible composites for multifunctional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022, 14(44): 50120–50128
CrossRef Google scholar
[17]
Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J. A mini-review of MXene porous films: preparation, mechanism and application. Journal of Materials Science and Technology, 2022, 103: 42–49
CrossRef Google scholar
[18]
Zhang Y, Ma Z, Ruan K, Gu J. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601–5609
CrossRef Google scholar
[19]
Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D, Lee H M, Koo C M, Kim S O. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722–11732
CrossRef Google scholar
[20]
Liu Z, Zhang Y, Zhang H B, Dai Y, Liu J, Li X, Yu Z Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1673–1678
CrossRef Google scholar
[21]
Zhang Y, Ruan K, Zhou K, Gu J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642
CrossRef Google scholar
[22]
Qi C Z, Wu X, Liu J, Luo X J, Zhang H B, Yu Z Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. Journal of Materials Science and Technology, 2023, 135: 213–220
CrossRef Google scholar
[23]
Jiao C, Deng Z, Min P, Lai J, Gou Q, Gao R, Yu Z Z, Zhang H B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198: 179–187
CrossRef Google scholar
[24]
ZhangY GHuangL ZYuanQMaM G. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2022, online, https://doi.org/10.1007/s11705-022-2251-2
[25]
Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 2021, 5(12): 2100889
CrossRef Google scholar
[26]
Cao W T, Chen F F, Zhu Y J, Zhang Y G, Jiang Y Y, Ma M G, Chen F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593
CrossRef Google scholar
[27]
Feng S, Zhan Z, Yi Y, Zhou Z, Lu C. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Composites. Part A, Applied Science and Manufacturing, 2022, 157: 106907
CrossRef Google scholar
[28]
Chen S, Yue N, Cui M, Penkova A, Huang R, Qi W, He Z, Su R. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydrate Polymers, 2022, 294: 119803
CrossRef Google scholar
[29]
Van Hai L, Zhai L, Kim H C, Kim J W, Choi E S, Kim J. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70
CrossRef Google scholar
[30]
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054
CrossRef Google scholar
[31]
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synthetic Metals, 2011, 161(15–16): 1522–1526
CrossRef Google scholar
[32]
Xu L Q, Yang W J, Neoh K G, Kang E T, Fu G D. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 2010, 43(20): 8336–8339
CrossRef Google scholar
[33]
Wan S, Li X, Wang Y, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L, Cheng Q. Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154–27161
CrossRef Google scholar
[34]
Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983
CrossRef Google scholar
[35]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
CrossRef Google scholar
[36]
Chen H, Wen Y, Qi Y, Zhao Q, Qu L, Li C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Advanced Functional Materials, 2020, 30(5): 1906996
CrossRef Google scholar
[37]
Ren H P, Song Y H, Hao Q Q, Liu Z W, Wang W, Chen J G, Jiang J, Liu Z T, Hao Z, Lu J. Highly active and stable Ni–SiO2 prepared by a complex-decomposition method for pressurized carbon dioxide reforming of methane. Industrial & Engineering Chemistry Research, 2014, 53(49): 19077–19086
CrossRef Google scholar
[38]
Ashok J, Kawi S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis, 2014, 4(1): 289–301
CrossRef Google scholar
[39]
Luo S, Xiang T, Dong J, Su F, Ji Y, Liu C, Feng Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129: 127–134
CrossRef Google scholar
[40]
Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5(90): 73416–73423
CrossRef Google scholar
[41]
Han M, Gogotsi Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17–25
CrossRef Google scholar
[42]
Qian K, Wu H, Fang J, Yang Y, Miao M, Cao S, Shi L, Feng X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254: 117325
CrossRef Google scholar
[43]
Zhou J, Thaiboonrod S, Fang J, Cao S, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15(9): 8536–8545
CrossRef Google scholar
[44]
Song Q, Chen B, Zhou Z, Lu C. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64(6): 1437–1448
CrossRef Google scholar
[45]
Zhan Z, Song Q, Zhou Z, Lu C. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829
CrossRef Google scholar
[46]
Zhou B, Zhang Z, Li Y, Han G, Feng Y, Wang B, Zhang D, Ma J, Liu C. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and Mxene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905
CrossRef Google scholar
[47]
Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Applied Materials & Interfaces, 2019, 11(10): 10198–10207
CrossRef Google scholar
[48]
Zhang H, Sun X, Heng Z, Chen Y, Zou H, Liang M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152–17160
CrossRef Google scholar
[49]
Li Y, Chen Y, Liu Y, Zhang C, Qi H. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274: 118652
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant No. 2022YFG0291), State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2022-3-20), and the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University (Grant No. 2020SCUNG203). Authors appreciate Dr. Guiping Yuan from Analytical & Testing Center, Sichuan University for the TEM analysis.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2335-7 is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6420 KB)

Accesses

Citations

Detail

Sections
Recommended

/