RESEARCH ARTICLE

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting

  • Yu Liu 1 ,
  • Lin Chen 1 ,
  • Yong Wang 1 ,
  • Yuan Dong 1 ,
  • Liang Zhou 1 ,
  • Susana I. Córdoba de Torresi 2 ,
  • Kenneth I. Ozoemena 1,3 ,
  • Xiao-Yu Yang , 1,3
Expand
  • 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & International School of Materials Science and Engineering & School of Materials Science and Engineering & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
  • 2. Instituto de Química, Universidade de São Paulo, 05508-080 São Paulo, Brazil
  • 3. Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
xyyang@whut.edu.cn

Received date: 13 Mar 2023

Accepted date: 17 Apr 2023

Published date: 15 Nov 2023

Copyright

2023 Higher Education Press

Abstract

The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA∙cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA∙cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA∙cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

Cite this article

Yu Liu , Lin Chen , Yong Wang , Yuan Dong , Liang Zhou , Susana I. Córdoba de Torresi , Kenneth I. Ozoemena , Xiao-Yu Yang . NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(11) : 1698 -1706 . DOI: 10.1007/s11705-023-2334-8

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This study was supported by National Key R&D Program of China (Grant Nos. 2022YFB3805600 and 2022YFB3805604), South Africa’s National Research Foundation through the SARChI Chair in Materials Electrochemistry and Energy Technologies (Grant No. 132739), National Natural Science Foundation of China (Grant No. 22293020), National 111 project (Grant No. B20002), Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R52), Sino-German Centre’s COVID-19 Related Bilateral Collaborative Project (Grant No. C-0046), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010137), Shenzhen Science and Technology Program (Grant Nos. GJHZ20210705143204014, JCYJ20210324142010029, and KCXFZ20211020170006010).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-023-2334-8 and is accessible for authorized users.
1
Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Letters, 2019, 4(4): 933–942

DOI

2
Kuang Y, Kenney M J, Meng Y T, Hung W H, Liu Y J, Huang J E, Prasanna R, Li P S, Li Y P, Wang L, Lin M C, McGehee M D, Sun X, Dai H. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

DOI

3
Wu X H, Zhou S, Wang Z Y, Liu J S, Pei W, Yang P J, Zhao J J, Qiu J S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333

DOI

4
Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399

DOI

5
Xiang C X, Weber A Z, Ardo S, Berger A, Chen Y K, Coridan R, Fountaine K T, Haussener S, Hu S, Liu R, Lewis N S, Modestino M A, Shaner M M, Singh M R, Stevens J C, Sun K, Walczak K. Modeling, simulation, and implementation of solar-driven water-splitting devices. Angewandte Chemie International Edition, 2016, 55(42): 12974–12988

DOI

6
Li F S, Xu R, Nie C M, Wu X J, Zhang P L, Duan L L, Sun L C. Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. Chemical Communications, 2019, 55(86): 12940–12943

DOI

7
Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angewandte Chemie International Edition, 2014, 53(29): 7584–7588

DOI

8
Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921–2924

DOI

9
Jiang J, Liu J P, Zhou W W, Zhu J H, Huang X T, Qi X Y, Zhang H, Yu T. CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy & Environmental Science, 2011, 4(12): 5000–5007

DOI

10
Hsu S H, Miao J W, Zhang L P, Gao J J, Wang H M, Tao H B, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261

DOI

11
Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106

DOI

12
Xiao Y X, Ying J, Tian G, Yang X, Zhang Y X, Chen J B, Wang Y, Symes M D, Ozoemena K I, Wu J S, Yang X Y. Hierarchically fractal PtPdCu sponges and their directed mass- and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878

DOI

13
Wang H Y, Weng C C, Ren J T, Yuan Z Y. An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426

DOI

14
Hu R G, Liu F Y, Qiu H Q, Miao H, Wang Q, Zhang H C, Wang F, Yuan J L. High-property anode catalyst compositing Co-based perovskite and NiFe-layered double hydroxide for alkaline seawater splitting. Processes, 2022, 10(4): 668

DOI

15
Jiang S S, Liu Y, Qiu H, Su C, Shao Z P. High selectivity electrocatalysts for oxygen evolution reaction and anti-chlorine corrosion strategies in seawater splitting. Catalysts, 2022, 12(3): 261

DOI

16
Li Y C, Wu X Y, Wang J P, Wei H X, Zhang S Y, Zhu S L, Li Z Y, Wu S L, Jiang H, Liang Y Q. Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochimica Acta, 2021, 390: 138833

DOI

17
Fang F, Wang Y, Shen L W, Tian G, Cahen D, Xiao Y X, Chen J B, Wu S M, He L, Ozoemena K I, Symes M D, Yang X Y. Interfacial carbon makes nano-particulate RuO2 an efficient, stable, pH-universal catalyst for splitting of seawater. Small, 2022, 18(42): 2203778

DOI

18
Higgins S. Regarding ruthenium. Nature Chemistry, 2010, 2(12): 1100

DOI

19
Yu J, He Q J, Yang G M, Zhou W, Shao Z P, Ni M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 2019, 9(11): 9973–10011

DOI

20
Jia M P, Shen L, Tian G, de Torresi S I C, Symes M D, Yang X Y. Superior electrocatalysis delivered by a directional electron transfer cascade in hierarchical CoNi/Ru@C. Chemistry, an Asian Journal, 2022, 17(17): e202200449

DOI

21
Chen G B, Wang T, Zhang J, Liu P, Sun H J, Zhuang X D, Chen M W, Feng X L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Advanced Materials, 2018, 30(10): 1706279

DOI

22
Zhang X Y, Wu Z Z, Wang D Z. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281: 540–548

DOI

23
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2013, 135(47): 17881–17888

DOI

24
Han M M, Yan G. Prussian blue analogue-derived porous bimetallic oxides Fe3O4-NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74(12): 4473–4480

DOI

25
Zhu Y X, Jiang M Y, Liu M, Wu L K, Hou G Y, Tang Y P. An Fe-V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction. Nanoscale, 2020, 12(6): 3803–3811

DOI

26
Yan X D, Tian L H, Li K X, Atkins S, Zhao H F, Murowchick J, Liu L, Chen X B. FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials Interfaces, 2016, 3(22): 1600368

DOI

27
Mansour A N. Characterization of NiO by XPS. Surface Science Spectra, 1994, 3(3): 231–238

DOI

28
Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy & Environmental Science, 2020, 13(1): 86–95

DOI

29
Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6(1): 6616

DOI

30
Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie International Edition, 2019, 58(5): 1252–1265

DOI

31
Gao X Y, Chen J, Sun X Z, Wu B F, Li B, Ning Z C, Li J, Wang N. Ru/RuO2 nanoparticle composites with N-doped reduced graphene oxide as electrocatalysts for hydrogen and oxygen evolution. ACS Applied Nano Materials, 2020, 3(12): 12269–12277

DOI

32
Shen L W, Wang Y, Chen J B, Tian G, Xiong K Y, Janiak C, Cahen D, Yang X Y. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Letters, 2023, 23(3): 1052–1060

DOI

33
Wang Z F, Shen Q Q, Xue J B, Guan R F, Li Q, Liu X G, Jia H S, Wu Y C. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chemical Engineering Journal, 2020, 402: 126151

DOI

34
Dong G F, Fang M, Zhang J S, Wei R J, Shu L, Liang X G, Yip S P, Wang F Y, Guan L H, Zheng Z J, Ho J C. In situ formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11009–11015

DOI

35
Tian X Y, Zhao P C, Sheng W C. Hydrogen evolution and oxidation: mechanistic studies and material advances. Advanced Materials, 2019, 31(31): 1808066

DOI

36
Liu Y, Yu H Z, Wang Y, Tian G, Zhou L, de Torresi S I C, Ozoemena K I, Yang X Y. Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58(49): 6882–6885

DOI

37
Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366

DOI

38
Ren J T, Chen L, Wang H Y, Tian W W, Zhang X, Ma T Y, Zhou Z, Yuan Z Y. Inducing electronic asymmetricity on Ru clusters to boost key reaction steps in basic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 327: 122466

DOI

39
Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256–1260

DOI

40
Ren J T, Wang L, Chen L, Song X L, Kong Q H, Wang H Y, Yuan Z Y. Interface metal oxides regulating electronic state around nickel species for efficient alkaline hydrogen electrocatalysis. Small, 2023, 19(5): 2206196

DOI

41
Cao D, Xu H X, Cheng D J. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Advanced Energy Materials, 2020, 10(9): 1903038

DOI

42
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

DOI

43
Ren J T, Yuan G G, Weng C C, Chen L, Yuan Z Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10(22): 10620–10628

DOI

44
Ren J T, Yao Y L, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643

DOI

45
Li J Y, Yan M, Zhou X M, Huang Z Q, Xia Z M, Chang C R, Ma Y Y, Qu Y Q. Mechanistic insights on ternary Ni2xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796

DOI

46
Samanta R, Panda P, Mishra R, Barman S. IrO2-modified RuO2 nanowires/nitrogen-doped carbon composite for effective overall water splitting in all pH. Energy & Fuels, 2022, 36(2): 1015–1026

DOI

47
Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

DOI

48
Huang S C, Meng Y Y, He S M, Goswami A, Wu Q L, Li J H, Tong S F, Asefa T, Wu M M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27(17): 1606585

DOI

49
Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408

DOI

50
Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753

DOI

Outlines

/