REVIEW ARTICLE

Pt–C interactions in carbon-supported Pt-based electrocatalysts

  • Yu-Xuan Xiao 1 ,
  • Jie Ying , 1 ,
  • Hong-Wei Liu 1 ,
  • Xiao-Yu Yang , 2
Expand
  • 1. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
  • 2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan 430070, China
yingj5@mail.sysu.edu.cn
xyyang@whut.edu.cn

Received date: 04 Nov 2022

Accepted date: 04 Jan 2023

Published date: 15 Nov 2023

Copyright

2023 Higher Education Press

Abstract

Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

Cite this article

Yu-Xuan Xiao , Jie Ying , Hong-Wei Liu , Xiao-Yu Yang . Pt–C interactions in carbon-supported Pt-based electrocatalysts[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(11) : 1677 -1697 . DOI: 10.1007/s11705-023-2300-5

Acknowledgements

Preparation of this review was financially supported by National Key Research and Development Program of China (Grant Nos. 2022YFB3805600 and 2022YFB3805604), National Natural Science Foundation of China (Grant No. 52201286), Sino-German Center COVID-19 Related Bilateral Collaborative Project (C-0046), FRFCU (2021qntd13), National 111 Project (B20002), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019A1515110436, 2021A1515111131, 2022A1515011905, and 2022A1515010137), Guangzhou Science and Technology Project (Grant No. 202102020463), Guangdong Province International Scientific and Technological Cooperation Projects (Grant No. 2020A0505100036), and Shenzhen Science and Technology Program (Grant Nos. GJHZ20210705143204014, JCYJ20210324142010029, and KCXFZ20211020170006010).
1
Zhou K L, Wang Z, Han C B, Ke X, Wang C, Jin Y, Zhang Q, Liu J, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3783

DOI

2
Li M, Zhao Z, Zhang W, Luo M, Tao L, Sun Y, Xia Z, Chao Y, Yin K, Zhang Q H, Gu L, Yang W, Yu Y, Lu G, Guo S. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Advanced Materials, 2021, 33(41): 2103762

DOI

3
Wu S M, Čejka J, Yang X Y. Active sites in the right places. Nature Synthesis, 2022, 1(10): 757–758

DOI

4
Yu F Y, Lang Z L, Yin L Y, Feng K, Xia Y J, Tan H Q, Zhu H T, Zhong J, Kang Z H, Li Y G. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 2020, 11(1): 490

DOI

5
Tian X, Zhao X, Su Y Q, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen E J, Lou X W, Xia B Y. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366(6467): 850–856

DOI

6
Ying J, Lenaerts S, Symes M D, Yang X Y. Hierarchical design in nanoporous metals. Advanced Science, 2022, 9: 2106117

7
Ying J. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604

DOI

8
Ying J, Jiang G, Cano Z P, Ma Z, Chen Z. Spontaneous weaving: 3D porous Pt−Cu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236: 359–367

DOI

9
Xiao Y X, Ying J, Tian G, Zhang X Q, Janiak C, Ozoemena K I, Yang X Y. Pt−Pd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chemical Communications, 2021, 57(8): 986–989

DOI

10
Xiao Y X, Ying J, Tian G, Yang X, Zhang Y X, Chen J B, Wang Y, Symes M D, Ozoemena K I, Wu J, Yang X Y. Hierarchically fractal Pt−Pd−Cu sponges and their directed mass-and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878

DOI

11
Wang Y, Yu H Z, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang G G, Ozoemena K I, Janiak C, Yang X Y. Ultimate corrosion to Pt–Cu electrocatalysts for enhancing methanol oxidation activity and stability in acidic media. Chemistry−A European Journal, 2021, 27(35): 9124–9128

DOI

12
Wang L, Zhang L, Ma W, Wan H, Zhang X, Zhang X, Jiang S, Zheng J Y, Zhou Z. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1−x(OH)2 to regulate the electronic structure for overall water splitting. Advanced Functional Materials, 2022, 32(31): 2203342

DOI

13
Feng X, Bai Y, Liu M, Li Y, Yang H, Wang X, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science, 2021, 14(4): 2036–2089

DOI

14
Hu C, Dai L. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angewandte Chemie International Edition, 2016, 55(39): 11736–11758

DOI

15
Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Advanced Materials, 2019, 31(13): 1804799

DOI

16
Zhang L, Jiang S, Ma W, Zhou Z. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43(6): 1433–1443

DOI

17
Dong Y, Ying J, Xiao Y X, Chen J B, Yang X Y. Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chemistry-an Asian Journal, 2021, 16(14): 1878–1881

DOI

18
Wei H, Hu Z Y, Xiao Y X, Tian G, Ying J, Van Tendeloo G, Janiak C, Yang X Y, Su B L. Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction. Chemistry-an Asian Journal, 2018, 13(9): 1119–1123

DOI

19
Shen L, Ying J, Tian G, Jia M, Yang X Y. Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction. Chemistry-an Asian Journal, 2021, 16(9): 1130–1137

DOI

20
Hammer B, Norskov J K. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240

DOI

21
Singh J, Nelson R C, Vicente B C, Scott S L, van Bokhoven J A. Electronic structure of alumina-supported monometallic Pt and bimetallic Pt–Sn catalysts under hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 2010, 12(21): 5668–5677

DOI

22
Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467

DOI

23
Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8(46): 24284–24306

DOI

24
Zhang X Q, Xiao Y X, Tian G, Yang X, Dong Y, Zhang F, Yang X Y. Enhancing resistance to chloride corrosion by controlling the morphologies of PtNi electrocatalysts for alkaline seawater hydrogen evolution. Chemistry–A European Journal, 2022, 29(5): e202202811

DOI

25
Li Z, Wang W, Qian Q, Zhu Y, Feng Y, Zhang Y, Zhang H, Cheng M, Zhang G. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience, 2022, 2(4): 416–427

26
Gerber I C, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chemical Reviews, 2019, 120(2): 1250–1349

DOI

27
Kim J M, Lee Y J, Kim S, Chae K H, Yoon K R, Lee K A, Byeon A, Kang Y S, Park H Y, Cho M K, Ham H C, Kim J Y. High-performance corrosion-resistant fluorine-doped tin oxide as an alternative to carbon support in electrodes for PEM fuel cells. Nano Energy, 2019, 65: 104008

DOI

28
Yang F, Bao X, Zhao Y, Wang X, Cheng G, Luo W. Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. Journal of Materials Chemistry A, 2019, 7(18): 10936–10941

DOI

29
Geng W, Jiang N, Qing G Y, Liu X, Wang L, Busscher H J, Tian G, Sun T, Wang L Y, Montelongo Y, Janiak C, Zhang G, Yang X Y, Su B L. Click reaction for reversible encapsulation of single yeast cells. ACS Nano, 2019, 13(12): 14459–14467

DOI

30
Wang L, Li Y, Yang X Y, Zhang B B, Ninane N, Busscher H J, Hu Z Y, Delneuville C, Jiang N, Xie H, Van Tendeloo G, Hasan T, Su B L. Single-cell yolk–shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8(4): nwaa097

DOI

31
Doan H, Morais T, Borchtchoukova N, Wijsboom Y, Sharabi R, Chatenet M, Finkelshtain G. Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Applied Catalysis B: Environmental, 2022, 301: 120811

DOI

32
Đukić T, Moriau L J, Pavko L, Kostelec M, Prokop M, Ruiz-Zepeda F, Šala M, Dražić G, Gatalo M, Hodnik N. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catalysis, 2021, 12(1): 101–115

DOI

33
Yao Y, Zhao X, Chang G, Yang X, Chen B. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Small Structures, 2023, 4(1): 2200187

DOI

34
Huang J F, Zeng R H, Chen J L. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9(38): 21972–21980

DOI

35
Sun Y, Li X, Wang J, Ning W, Fu J, Lu X, Hou Z. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution. Applied Catalysis B: Environmental, 2017, 218: 538–544

DOI

36
Shen L, Ying J, Ozoemena K I, Janiak C, Yang X Y. Confinement effects in individual carbon encapsulated nonprecious metal-based electrocatalysts. Advanced Functional Materials, 2022, 32(15): 2110851

DOI

37
Geng W, Wang L, Yang X Y. Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40(8): 974–986

DOI

38
Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J. Polymer-derived heteroatom-doped porous carbon materials. Chemical Reviews, 2020, 120(17): 9363–9419

DOI

39
Zhou Z, Liu T, Khan A U, Liu G. Block copolymer-based porous carbon fibers. Science Advances, 2019, 5(2): eaau6852

DOI

40
Yang G, Li X, Guan Z, Tong Y, Xu B, Wang X, Wang Z, Chen L. Insights into lithium and sodium storage in porous carbon. Nano Letters, 2020, 20(5): 3836–3843

DOI

41
Yin J, Zhang W, Alhebshi N A, Salah N, Alshareef H N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853

DOI

42
Stadie N P, Wang S, Kravchyk K V, Kovalenko M V. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 2017, 11(2): 1911–1919

DOI

43
Sazama P, Pastvova J, Rizescu C, Tirsoaga A, Parvulescu V I, Garcia H, Kobera L, Seidel J, Rathousky J, Klein P, Jirka I, Moravkova J, Blechta V. Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catalysis, 2018, 8(3): 1779–1789

DOI

44
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535(7610): 131–135

DOI

45
Xia Y, Mokaya R, Walker G S, Zhu Y. Superior CO2 asorption cpacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678–683

DOI

46
Bae S E, Kim K J, Choi I H, Huh S. Preparation of N-doped microporous carbon nanospheres by direct carbonization of as-prepared mesoporous silica nanospheres containing cetylpyridinium bromide template. Carbon, 2016, 99: 8–16

DOI

47
Li K, Tian S, Jiang J, Wang J, Chen X, Yan F. Pine cone shell-based activated carbon used for CO2 adsorption. Journal of Materials Chemistry A, 2016, 4(14): 5223–5234

DOI

48
Zhou J, Li Z, Xing W, Shen H, Bi X, Zhu T, Qiu Z, Zhuo S. A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake. Advanced Functional Materials, 2016, 26(44): 7955–7964

DOI

49
Blankenship L S, Balahmar N, Mokaya R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8(1): 1–12

DOI

50
Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586

DOI

51
Phan T N, Gong M K, Thangavel R, Lee Y S, Ko C H. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. Journal of Alloys and Compounds, 2019, 780: 90–97

DOI

52
Zhou Y, Candelaria S L, Liu Q, Uchaker E, Cao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577

DOI

53
Feng S, Li W, Wang J, Song Y, Elzatahry A A, Xia Y, Zhao D. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6(24): 14657–14661

DOI

54
Wang J G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92

DOI

55
Peng L, Hung C T, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. Journal of the American Chemical Society, 2019, 141(17): 7073–7080

DOI

56
Ferrero G A, Fuertes A B, Sevilla M, Titirici M M. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106: 179–187

DOI

57
Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Tian J, Lin N, Qian Y. Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Materials, 2020, 29: 341–349

DOI

58
Hu X, Liu Y, Chen J, Jia J, Zhan H, Wen Z. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7(3): 1138–1148

DOI

59
Li X, Fan L, Xu B, Shang Y, Li M, Zhang L, Liu S, Kang Z, Liu Z, Lu X, Sun D. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Applied Materials & Interfaces, 2021, 13(45): 53892–53903

DOI

60
Fang Z, Fernandez D, Wang N, Bai Z, Yu G. Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63(11): 1570–1577

DOI

61
Wang J, Yao Y, Zhang C, Sun Q, Cheng D, Huang X, Feng J, Wan J, Zou J, Liu C, Yu C. Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Advanced Science, 2021, 8(18): 2100120

DOI

62
Balgis R, Widiyastuti W, Ogi T, Okuyama K. Enhanced electrocatalytic activity of Pt/3D hierarchical bimodal macroporous carbon nanospheres. ACS Applied Materials & Interfaces, 2017, 9(28): 23792–23799

DOI

63
Li J, Zhang N, Zhao H, Li Z, Tian B, Du Y. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science Materials in Electronics, 2021, 32(21): 25758–25768

DOI

64
Meng T, Shang N, Zhao J, Su M, Wang C, Zhang Y. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. Journal of Colloid and Interface Science, 2021, 589: 135–146

DOI

65
Qu Y, Zan G, Wang J, Wu Q. Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4(11): 4296–4304

DOI

66
Dong S, Yang Z, Liu B, Zhang J, Xu P, Xiang M, Lu T. (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. Journal of Electroanalytical Chemistry, 2021, 897: 115562

DOI

67
Wang H, Yang D, Liu S, Yin S, Yu H, Xu Y, Li X, Wang Z, Wang L. Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409: 128101

DOI

68
Hu D, Fan W, Liu Z, Li L. Three-dimensionally hierarchical Pt/C nanocomposite with ultra-high dispersion of Pt nanoparticles as a highly efficient catalyst for chemoselective cinnamaldehyde hydrogenation. ChemCatChem, 2018, 10(4): 779–788

DOI

69
Eftekhari A, Fan Z. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers, 2017, 1(6): 1001–1027

DOI

70
Wu S M, Beller M, Yang X Y. A clear view of zeolite-catalyzed processes. Matter, 2022, 5(10): 3104–3107

DOI

71
Zhou X L, Zhang H, Shao L M, Lü F, He P J. Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste and Biomass Valorization, 2021, 12(4): 1699–1724

DOI

72
Wan X K, Wu H B, Guan B Y, Luan D, Lou X W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Advanced Materials, 2020, 32(7): 1901349

DOI

73
Kuang P, Wang Y, Zhu B, Xia F, Tung C W, Wu J, Chen H M, Yu J. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Advanced Materials, 2021, 33(18): 2008599

DOI

74
Ying J, Yang X Y, Hu Z Y, Mu S C, Janiak C, Geng W, Pan M, Ke X, Van Tendeloo G, Su B L. One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy, 2014, 8: 214–222

DOI

75
Ying J, Hu Z Y, Yang X Y, Wei H, Xiao Y X, Janiak C, Mu S C, Tian G, Pan M, Van Tendeloo G, Su B L. High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chemical Communications, 2016, 52(53): 8219–8222

DOI

76
Yu F, Bai X, Liang M, Ma J. Recent progress on metal–organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chemical Engineering Journal, 2021, 405: 126960

DOI

77
Liu B, Shioyama H, Akita T, Xu Q. Metal–organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 2008, 130(16): 5390–5391

DOI

78
Zhang L, Fischer J M T A, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles D J, Huang K, Feng S, Brown C L, Yao X. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. Journal of the American Chemical Society, 2018, 140(34): 10757–10763

DOI

79
Wu X Q, Zhao J, Wu Y P, Dong W W, Li D S, Li J R, Zhang Q. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Applied Materials & Interfaces, 2018, 10(15): 12740–12749

DOI

80
Ying J, Jiang G, Cano Z P, Han L, Yang X Y, Chen Z. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40: 88–94

DOI

81
Ying J, Li J, Jiang G, Cano Z P, Ma Z, Zhong C, Su D, Chen Z. Metal–organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225: 496–503

DOI

82
Liu H, Wu S, Tian N, Yan F, You C, Yang Y. Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8(45): 23699–23723

DOI

83
Zhang W, Minett A I, Gao M, Zhao J, Razal J M, Wallace G G, Romeo T, Chen J. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Advanced Energy Materials, 2011, 1(4): 671–677

DOI

84
Chen H, Liu T, Ren J, He H, Cao Y, Wang N, Guo Z. Synergistic carbon nanotube aerogel-Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4(9): 3238–3244

DOI

85
Ye J, Zhou M, Le Y, Cheng B, Yu J. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2020, 267: 118689

DOI

86
Atwa M, Li X, Wang Z, Dull S, Xu S, Tong X, Tang R, Nishihara H, Prinz F, Birss V. Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. Materials Horizons, 2021, 8(9): 2451–2462

DOI

87
Cherevko S, Kulyk N, Mayrhofer K J. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275–298

DOI

88
Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2015, 7(2): 1170–1179

DOI

89
Lai Q, Zheng J, Tang Z, Bi D, Zhao J, Liang Y. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angewandte Chemie International Edition, 2020, 59(29): 11999–12006

DOI

90
Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10(6): 1589–1596

DOI

91
Li J, Yang X Y. Membrane catalysts eliminate trace pollutants. Chem, 2022, 8(6): 1551–1553

DOI

92
Ning X, Yu H, Peng F, Wang H. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325: 136–144

DOI

93
Xiao Y X, Ying J, Chen J B, Dong Y, Yang X, Tian G, Wu J, Janiak C, Ozoemena K I, Yang X Y. Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d–π effect. Chemistry of Materials, 2022, 34(8): 3705–3714

DOI

94
Bulushev D A, Zacharska M, Lisitsyn A S, Podyacheva O Y, Hage F S, Ramasse Q M, Bangert U, Bulusheva L G. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catalysis, 2016, 6(6): 3442–3451

DOI

95
Luo H, Liu Y, Dimitrov S D, Steier L, Guo S, Li X, Feng J, Xie F, Fang Y, Sapelkin A, Wang X, Titirici M M. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8(29): 14690–14696

DOI

96
Schmies H, Hornberger E, Anke B, Jurzinsky T, Nong H N, Dionigi F, Kühl S, Drnec J, Lerch M, Cremers C, Strasser P. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts. Chemistry of Materials, 2018, 30(20): 7287–7295

DOI

97
Hornberger E, Merzdorf T, Schmies H, Hübner J, Klingenhof M, Gernert U, Kroschel M, Anke B, Lerch M, Schmidt J, Thomas A, Chattot R, Martens I, Drnec J, Strasser P. Impact of carbon N-doping and pyridinic-N content on the fuel cell performance and durability of carbon-supported Pt nanoparticle catalysts. ACS Applied Materials & Interfaces, 2022, 14(16): 18420–18430

DOI

98
Duan J, Chen S, Jaroniec M, Qiao S Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalysis, 2015, 5(9): 5207–5234

DOI

99
Sawant S V, Patwardhan A W, Joshi J B, Dasgupta K. Boron doped carbon nanotubes: synthesis, characterization and emerging applications—a review. Chemical Engineering Journal, 2022, 427: 131616

DOI

100
Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793

DOI

101
Hu M, Yao Z, Li L, Tsou Y H, Kuang L, Xu X, Zhang W, Wang X. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H2-SCR. Nanoscale, 2018, 10(21): 10203–10212

DOI

102
Yao R, Gu J, He H, Yu T. Improved electrocatalytic activity and durability of Pt nanoparticles supported on boron-doped carbon black. Catalysts, 2020, 10(8): 862

DOI

103
Samad S, Loh K S, Wong W Y, Lee T K, Sunarso J, Chong S T, Daud W R W. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43(16): 7823–7854

DOI

104
Kwon K, Jin S A, Pak C, Chang H, Joo S H, Lee H I, Kim J H, Kim J M. Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catalysis Today, 2011, 164(1): 186–189

DOI

105
Guo Y, Park T, Yi J W, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Advanced Materials, 2019, 31(17): 1807134

DOI

106
Higgins D, Hoque M A, Seo M H, Wang R, Hassan F, Choi J Y, Pritzker M Y A, Zhang J, Chen Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Advanced Functional Materials, 2014, 24(27): 4325–4336

DOI

107
Hoque M A, Hassan F M, Higgins D, Choi J Y, Pritzker M, Knights S, Ye S, Chen Z. Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Advanced Materials, 2015, 27(7): 1229–1234

DOI

108
Hoque M A, Hassan F M, Seo M H, Choi J Y, Pritzker M, Knights S, Ye S, Chen Z. Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19: 27–38

DOI

109
Hoque M A, Hassan F M, Jauhar A M, Jiang G, Pritzker M, Choi J Y, Knights S, Ye S, Chen Z. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93–98

DOI

110
Xu C, Hoque M A, Chiu G, Sung T, Chen Z. Stabilization of platinum-nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6(113): 112226–112231

DOI

111
Fan J J, Fan Y J, Wang R X, Xiang S, Tang H G, Sun S G. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2017, 5(36): 19467–19475

DOI

112
Kiciński W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: synthesis and applications. Carbon, 2014, 68: 1–32

DOI

113
Kang Y, Guo Y, Zhao J, Jiang B, Guo J, Tang Y, Li H, Malgras V, Amin M A, Nara H, Sugahara Y, Yamauchi Y, Asahi T. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small, 2022, 18(31): 2203411

DOI

114
Li Z, Lin J, Li B, Yu C, Wang H, Li Q. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. Journal of Energy Storage, 2021, 44: 103437

DOI

115
Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500

DOI

116
Shin D Y, Sung K W, Ahn H J. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Applied Surface Science, 2019, 478: 499–504

DOI

117
Chang Y, Hong F, Liu J, Xie M, Zhang Q, He C, Niu H, Liu J. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. Carbon, 2015, 87: 424–433

DOI

118
Zhu J, He G, Tian Z, Liang L, Shen P K. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194: 276–282

DOI

119
Paul R, Du F, Dai L, Ding Y, Wang Z L, Wei F, Roy A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Advanced Materials, 2019, 31(13): 1805598

DOI

120
Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480

DOI

121
Fan S S, Shen L, Dong Y, Tian G, Wu S M, Chang G G, Janiak C, Wei P, Wu J S, Yang X Y. sp3-like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. Journal of Energy Chemistry, 2021, 57: 189–197

DOI

122
Ji S G, Kwon H C, Kim T H, Sim U, Choi C H. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells?. ACS Catalysis, 2022, 12(12): 7317–7325

DOI

123
Tong X, Zhang J, Zhang G, Wei Q, Chenitz R, Claverie J P, Sun S. Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chemistry of Materials, 2017, 29(21): 9579–9587

DOI

124
Karuppannan M, Kim Y, Gok S, Lee E, Hwang J Y, Jang J H, Cho Y H, Lim T, Sung Y E, Kwon O J. A highly durable carbon-nanofiber-supported Pt–C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy & Environmental Science, 2019, 12(9): 2820–2829

DOI

125
Xiao H, Xue S, Zhang J, Zhao M, Ma J, Chen S, Zheng Z, Jia J, Wu H. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408: 127271

DOI

126
Dang Q, Sun Y, Wang X, Zhu W, Chen Y, Liao F, Huang H, Shao M. Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257: 117905

DOI

127
Xiao H, Zhang J, Zhao M, Ma J, Li Y, Hu T, Zheng Z, Jia J, Wu H. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. Journal of Power Sources, 2020, 451: 227770

DOI

128
Yan M, Jiang Q, Zhang T, Wang J, Yang L, Lu Z, He H, Fu Y, Wang X, Huang H. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6(37): 18165–18172

DOI

129
Sun Y, Li M, Qu X, Zheng S, Alvarez P J, Fu H. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Applied Materials & Interfaces, 2021, 13(25): 29541–29550

DOI

130
Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources, 2012, 208: 96–119

DOI

131
Hu G, Xiao Y, Ying J. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings. International Journal of Molecular Sciences, 2021, 22(20): 11087

DOI

132
Chen J, Ying J, Xiao Y, Dong Y, Ozoemena K I, Lenaerts S, Yang X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Science China Materials, 2022, 65(10): 1–9

DOI

133
Park K, Ohnishi T, Goto M, So M, Takenaka S, Tsuge Y, Inoue G. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45(3): 1867–1877

DOI

134
Islam J, Kim S K, Kim K H, Lee E, Park G G. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46(1): 1133–1143

DOI

135
Barbosa E C, Parreira L S, de Freitas I C, Aveiro L R, de Oliveira D C, dos Santos M C, Camargo P H C. Pt-decorated TiO2 materials supported on carbon: increasing activities and stabilities toward the ORR by tuning the Pt loading. ACS Applied Energy Materials, 2019, 2(8): 5759–5768

DOI

136
Lee W J, Bera S, Woo H, Kim H G, Baek J H, Hong W, Park J Y, Oh S J, Kwon S H. In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition. Chemistry of Materials, 2022, 34(13): 5949–5959

DOI

137
de Oliveira D C, Silva W O, Chatenet M, Lima F H B. NiOx-Pt/C nanocomposites: highly active electrocatalysts for the electrochemical oxidation of hydrazine. Applied Catalysis B: Environmental, 2017, 201: 22–28

DOI

138
Gu B, Sun T, Wang Y, Long Y, Fu J, Fan G. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorganic Chemistry Frontiers, 2022, 9(10): 2204–2212

DOI

139
Song Z, Wang B, Cheng N, Yang L, Banham D, Li R, Ye S, Sun X. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5(20): 9760–9767

DOI

140
Ma Z, Li S, Wu L, Song L, Jiang G, Liang Z, Su D, Zhu Y, Adzic R R, Wang J X, Chen Z. NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69: 104455

DOI

141
He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir, 2011, 27(9): 5582–5588

DOI

142
Wei L, Fan Y J, Ma J H, Tao L H, Wang R X, Zhong J P, Wang H. Highly dispersed Pt nanoparticles supported on manganese oxide-poly(3,4-ethylenedioxythiophene)-carbon nanotubes composite for enhanced methanol electrooxidation. Journal of Power Sources, 2013, 238: 157–164

DOI

143
Wang R X, Fan J J, Fan Y J, Zhong J P, Wang L, Sun S G, Shen X C. Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale, 2014, 6(24): 14999–15007

DOI

144
Wang R X, Fan Y J, Wang L, Wu L N, Sun S N, Sun S G. Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. Journal of Power Sources, 2015, 287: 341–348

DOI

145
Eßbach C, Senkovska I, Unmüssig T, Fischer A, Kaskel S. Selective alcohol electrooxidation by ZIF-8 functionalized Pt/carbon catalyst. ACS Applied Materials & Interfaces, 2019, 11(23): 20915–20922

DOI

146
Choi J, Lee Y J, Park D, Jeong H, Shin S, Yun H, Lim J, Han J, Kim E J, Jeon S S, Jung Y, Lee H, Kim B J. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy & Environmental Science, 2020, 13(12): 4921–4929

DOI

147
Xiao Y X, Ying J, Tian G, Tao Y, Wei H, Fan S Y, Sun Z H, Zou W J, Hu J, Chang G G, Li W, Yang X Y, Janiak C. Highly dispersed PtPd on graphitic nanofibers and its heavy d–π effect. Applied Catalysis B: Environmental, 2019, 259: 118080

DOI

148
Dong Y, Li J, Yang X Y. Cu catalysts detour hydrogen evolution reaction. Matter, 2022, 5(8): 2537–2540

DOI

149
Bai G, Liu C, Gao Z, Lu B, Tong X, Guo X, Yang N. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation. Small, 2019, 15(38): 1902951

DOI

150
Dong Y, Chen J B, Ying J, Xiao Y X, Tian G, Symes M D, Yang X Y. Efficient water dissociation on confined ultrafine Pt via pyridinic N-enhanced heavy d−π interaction. Chemistry of Materials, 2022, 34(18): 8271–8279

DOI

151
Fan H, Cheng M, Wang L, Song Y, Cui Y, Wang R. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy, 2018, 48: 1–9

DOI

Outlines

/