Pt–C interactions in carbon-supported Pt-based electrocatalysts
Yu-Xuan Xiao, Jie Ying, Hong-Wei Liu, Xiao-Yu Yang
Pt–C interactions in carbon-supported Pt-based electrocatalysts
Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.
Pt–C interactions / Pt-based materials / carbon support / electrocatalysis
[1] |
Zhou K L, Wang Z, Han C B, Ke X, Wang C, Jin Y, Zhang Q, Liu J, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3783
CrossRef
Google scholar
|
[2] |
Li M, Zhao Z, Zhang W, Luo M, Tao L, Sun Y, Xia Z, Chao Y, Yin K, Zhang Q H, Gu L, Yang W, Yu Y, Lu G, Guo S. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Advanced Materials, 2021, 33(41): 2103762
CrossRef
Google scholar
|
[3] |
Wu S M, Čejka J, Yang X Y. Active sites in the right places. Nature Synthesis, 2022, 1(10): 757–758
CrossRef
Google scholar
|
[4] |
Yu F Y, Lang Z L, Yin L Y, Feng K, Xia Y J, Tan H Q, Zhu H T, Zhong J, Kang Z H, Li Y G. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 2020, 11(1): 490
CrossRef
Google scholar
|
[5] |
Tian X, Zhao X, Su Y Q, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen E J, Lou X W, Xia B Y. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366(6467): 850–856
CrossRef
Google scholar
|
[6] |
Ying J, Lenaerts S, Symes M D, Yang X Y. Hierarchical design in nanoporous metals. Advanced Science, 2022, 9: 2106117
|
[7] |
Ying J. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604
CrossRef
Google scholar
|
[8] |
Ying J, Jiang G, Cano Z P, Ma Z, Chen Z. Spontaneous weaving: 3D porous Pt−Cu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236: 359–367
CrossRef
Google scholar
|
[9] |
Xiao Y X, Ying J, Tian G, Zhang X Q, Janiak C, Ozoemena K I, Yang X Y. Pt−Pd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chemical Communications, 2021, 57(8): 986–989
CrossRef
Google scholar
|
[10] |
Xiao Y X, Ying J, Tian G, Yang X, Zhang Y X, Chen J B, Wang Y, Symes M D, Ozoemena K I, Wu J, Yang X Y. Hierarchically fractal Pt−Pd−Cu sponges and their directed mass-and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878
CrossRef
Google scholar
|
[11] |
Wang Y, Yu H Z, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang G G, Ozoemena K I, Janiak C, Yang X Y. Ultimate corrosion to Pt–Cu electrocatalysts for enhancing methanol oxidation activity and stability in acidic media. Chemistry−A European Journal, 2021, 27(35): 9124–9128
CrossRef
Google scholar
|
[12] |
Wang L, Zhang L, Ma W, Wan H, Zhang X, Zhang X, Jiang S, Zheng J Y, Zhou Z. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1−x(OH)2 to regulate the electronic structure for overall water splitting. Advanced Functional Materials, 2022, 32(31): 2203342
CrossRef
Google scholar
|
[13] |
Feng X, Bai Y, Liu M, Li Y, Yang H, Wang X, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science, 2021, 14(4): 2036–2089
CrossRef
Google scholar
|
[14] |
Hu C, Dai L. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angewandte Chemie International Edition, 2016, 55(39): 11736–11758
CrossRef
Google scholar
|
[15] |
Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Advanced Materials, 2019, 31(13): 1804799
CrossRef
Google scholar
|
[16] |
Zhang L, Jiang S, Ma W, Zhou Z. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43(6): 1433–1443
CrossRef
Google scholar
|
[17] |
Dong Y, Ying J, Xiao Y X, Chen J B, Yang X Y. Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chemistry-an Asian Journal, 2021, 16(14): 1878–1881
CrossRef
Google scholar
|
[18] |
Wei H, Hu Z Y, Xiao Y X, Tian G, Ying J, Van Tendeloo G, Janiak C, Yang X Y, Su B L. Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction. Chemistry-an Asian Journal, 2018, 13(9): 1119–1123
CrossRef
Google scholar
|
[19] |
Shen L, Ying J, Tian G, Jia M, Yang X Y. Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction. Chemistry-an Asian Journal, 2021, 16(9): 1130–1137
CrossRef
Google scholar
|
[20] |
Hammer B, Norskov J K. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240
CrossRef
Google scholar
|
[21] |
Singh J, Nelson R C, Vicente B C, Scott S L, van Bokhoven J A. Electronic structure of alumina-supported monometallic Pt and bimetallic Pt–Sn catalysts under hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 2010, 12(21): 5668–5677
CrossRef
Google scholar
|
[22] |
Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467
CrossRef
Google scholar
|
[23] |
Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8(46): 24284–24306
CrossRef
Google scholar
|
[24] |
Zhang X Q, Xiao Y X, Tian G, Yang X, Dong Y, Zhang F, Yang X Y. Enhancing resistance to chloride corrosion by controlling the morphologies of PtNi electrocatalysts for alkaline seawater hydrogen evolution. Chemistry–A European Journal, 2022, 29(5): e202202811
CrossRef
Google scholar
|
[25] |
Li Z, Wang W, Qian Q, Zhu Y, Feng Y, Zhang Y, Zhang H, Cheng M, Zhang G. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience, 2022, 2(4): 416–427
|
[26] |
Gerber I C, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chemical Reviews, 2019, 120(2): 1250–1349
CrossRef
Google scholar
|
[27] |
Kim J M, Lee Y J, Kim S, Chae K H, Yoon K R, Lee K A, Byeon A, Kang Y S, Park H Y, Cho M K, Ham H C, Kim J Y. High-performance corrosion-resistant fluorine-doped tin oxide as an alternative to carbon support in electrodes for PEM fuel cells. Nano Energy, 2019, 65: 104008
CrossRef
Google scholar
|
[28] |
Yang F, Bao X, Zhao Y, Wang X, Cheng G, Luo W. Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. Journal of Materials Chemistry A, 2019, 7(18): 10936–10941
CrossRef
Google scholar
|
[29] |
Geng W, Jiang N, Qing G Y, Liu X, Wang L, Busscher H J, Tian G, Sun T, Wang L Y, Montelongo Y, Janiak C, Zhang G, Yang X Y, Su B L. Click reaction for reversible encapsulation of single yeast cells. ACS Nano, 2019, 13(12): 14459–14467
CrossRef
Google scholar
|
[30] |
Wang L, Li Y, Yang X Y, Zhang B B, Ninane N, Busscher H J, Hu Z Y, Delneuville C, Jiang N, Xie H, Van Tendeloo G, Hasan T, Su B L. Single-cell yolk–shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8(4): nwaa097
CrossRef
Google scholar
|
[31] |
Doan H, Morais T, Borchtchoukova N, Wijsboom Y, Sharabi R, Chatenet M, Finkelshtain G. Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Applied Catalysis B: Environmental, 2022, 301: 120811
CrossRef
Google scholar
|
[32] |
Đukić T, Moriau L J, Pavko L, Kostelec M, Prokop M, Ruiz-Zepeda F, Šala M, Dražić G, Gatalo M, Hodnik N. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catalysis, 2021, 12(1): 101–115
CrossRef
Google scholar
|
[33] |
Yao Y, Zhao X, Chang G, Yang X, Chen B. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Small Structures, 2023, 4(1): 2200187
CrossRef
Google scholar
|
[34] |
Huang J F, Zeng R H, Chen J L. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9(38): 21972–21980
CrossRef
Google scholar
|
[35] |
Sun Y, Li X, Wang J, Ning W, Fu J, Lu X, Hou Z. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution. Applied Catalysis B: Environmental, 2017, 218: 538–544
CrossRef
Google scholar
|
[36] |
Shen L, Ying J, Ozoemena K I, Janiak C, Yang X Y. Confinement effects in individual carbon encapsulated nonprecious metal-based electrocatalysts. Advanced Functional Materials, 2022, 32(15): 2110851
CrossRef
Google scholar
|
[37] |
Geng W, Wang L, Yang X Y. Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40(8): 974–986
CrossRef
Google scholar
|
[38] |
Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J. Polymer-derived heteroatom-doped porous carbon materials. Chemical Reviews, 2020, 120(17): 9363–9419
CrossRef
Google scholar
|
[39] |
Zhou Z, Liu T, Khan A U, Liu G. Block copolymer-based porous carbon fibers. Science Advances, 2019, 5(2): eaau6852
CrossRef
Google scholar
|
[40] |
Yang G, Li X, Guan Z, Tong Y, Xu B, Wang X, Wang Z, Chen L. Insights into lithium and sodium storage in porous carbon. Nano Letters, 2020, 20(5): 3836–3843
CrossRef
Google scholar
|
[41] |
Yin J, Zhang W, Alhebshi N A, Salah N, Alshareef H N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853
CrossRef
Google scholar
|
[42] |
Stadie N P, Wang S, Kravchyk K V, Kovalenko M V. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 2017, 11(2): 1911–1919
CrossRef
Google scholar
|
[43] |
Sazama P, Pastvova J, Rizescu C, Tirsoaga A, Parvulescu V I, Garcia H, Kobera L, Seidel J, Rathousky J, Klein P, Jirka I, Moravkova J, Blechta V. Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catalysis, 2018, 8(3): 1779–1789
CrossRef
Google scholar
|
[44] |
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535(7610): 131–135
CrossRef
Google scholar
|
[45] |
Xia Y, Mokaya R, Walker G S, Zhu Y. Superior CO2 asorption cpacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678–683
CrossRef
Google scholar
|
[46] |
Bae S E, Kim K J, Choi I H, Huh S. Preparation of N-doped microporous carbon nanospheres by direct carbonization of as-prepared mesoporous silica nanospheres containing cetylpyridinium bromide template. Carbon, 2016, 99: 8–16
CrossRef
Google scholar
|
[47] |
Li K, Tian S, Jiang J, Wang J, Chen X, Yan F. Pine cone shell-based activated carbon used for CO2 adsorption. Journal of Materials Chemistry A, 2016, 4(14): 5223–5234
CrossRef
Google scholar
|
[48] |
Zhou J, Li Z, Xing W, Shen H, Bi X, Zhu T, Qiu Z, Zhuo S. A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake. Advanced Functional Materials, 2016, 26(44): 7955–7964
CrossRef
Google scholar
|
[49] |
Blankenship L S, Balahmar N, Mokaya R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8(1): 1–12
CrossRef
Google scholar
|
[50] |
Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586
CrossRef
Google scholar
|
[51] |
Phan T N, Gong M K, Thangavel R, Lee Y S, Ko C H. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. Journal of Alloys and Compounds, 2019, 780: 90–97
CrossRef
Google scholar
|
[52] |
Zhou Y, Candelaria S L, Liu Q, Uchaker E, Cao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
CrossRef
Google scholar
|
[53] |
Feng S, Li W, Wang J, Song Y, Elzatahry A A, Xia Y, Zhao D. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6(24): 14657–14661
CrossRef
Google scholar
|
[54] |
Wang J G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92
CrossRef
Google scholar
|
[55] |
Peng L, Hung C T, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. Journal of the American Chemical Society, 2019, 141(17): 7073–7080
CrossRef
Google scholar
|
[56] |
Ferrero G A, Fuertes A B, Sevilla M, Titirici M M. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106: 179–187
CrossRef
Google scholar
|
[57] |
Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Tian J, Lin N, Qian Y. Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Materials, 2020, 29: 341–349
CrossRef
Google scholar
|
[58] |
Hu X, Liu Y, Chen J, Jia J, Zhan H, Wen Z. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7(3): 1138–1148
CrossRef
Google scholar
|
[59] |
Li X, Fan L, Xu B, Shang Y, Li M, Zhang L, Liu S, Kang Z, Liu Z, Lu X, Sun D. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Applied Materials & Interfaces, 2021, 13(45): 53892–53903
CrossRef
Google scholar
|
[60] |
Fang Z, Fernandez D, Wang N, Bai Z, Yu G. Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63(11): 1570–1577
CrossRef
Google scholar
|
[61] |
Wang J, Yao Y, Zhang C, Sun Q, Cheng D, Huang X, Feng J, Wan J, Zou J, Liu C, Yu C. Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Advanced Science, 2021, 8(18): 2100120
CrossRef
Google scholar
|
[62] |
Balgis R, Widiyastuti W, Ogi T, Okuyama K. Enhanced electrocatalytic activity of Pt/3D hierarchical bimodal macroporous carbon nanospheres. ACS Applied Materials & Interfaces, 2017, 9(28): 23792–23799
CrossRef
Google scholar
|
[63] |
Li J, Zhang N, Zhao H, Li Z, Tian B, Du Y. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science Materials in Electronics, 2021, 32(21): 25758–25768
CrossRef
Google scholar
|
[64] |
Meng T, Shang N, Zhao J, Su M, Wang C, Zhang Y. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. Journal of Colloid and Interface Science, 2021, 589: 135–146
CrossRef
Google scholar
|
[65] |
Qu Y, Zan G, Wang J, Wu Q. Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4(11): 4296–4304
CrossRef
Google scholar
|
[66] |
Dong S, Yang Z, Liu B, Zhang J, Xu P, Xiang M, Lu T. (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. Journal of Electroanalytical Chemistry, 2021, 897: 115562
CrossRef
Google scholar
|
[67] |
Wang H, Yang D, Liu S, Yin S, Yu H, Xu Y, Li X, Wang Z, Wang L. Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409: 128101
CrossRef
Google scholar
|
[68] |
Hu D, Fan W, Liu Z, Li L. Three-dimensionally hierarchical Pt/C nanocomposite with ultra-high dispersion of Pt nanoparticles as a highly efficient catalyst for chemoselective cinnamaldehyde hydrogenation. ChemCatChem, 2018, 10(4): 779–788
CrossRef
Google scholar
|
[69] |
Eftekhari A, Fan Z. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers, 2017, 1(6): 1001–1027
CrossRef
Google scholar
|
[70] |
Wu S M, Beller M, Yang X Y. A clear view of zeolite-catalyzed processes. Matter, 2022, 5(10): 3104–3107
CrossRef
Google scholar
|
[71] |
Zhou X L, Zhang H, Shao L M, Lü F, He P J. Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste and Biomass Valorization, 2021, 12(4): 1699–1724
CrossRef
Google scholar
|
[72] |
Wan X K, Wu H B, Guan B Y, Luan D, Lou X W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Advanced Materials, 2020, 32(7): 1901349
CrossRef
Google scholar
|
[73] |
Kuang P, Wang Y, Zhu B, Xia F, Tung C W, Wu J, Chen H M, Yu J. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Advanced Materials, 2021, 33(18): 2008599
CrossRef
Google scholar
|
[74] |
Ying J, Yang X Y, Hu Z Y, Mu S C, Janiak C, Geng W, Pan M, Ke X, Van Tendeloo G, Su B L. One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy, 2014, 8: 214–222
CrossRef
Google scholar
|
[75] |
Ying J, Hu Z Y, Yang X Y, Wei H, Xiao Y X, Janiak C, Mu S C, Tian G, Pan M, Van Tendeloo G, Su B L. High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chemical Communications, 2016, 52(53): 8219–8222
CrossRef
Google scholar
|
[76] |
Yu F, Bai X, Liang M, Ma J. Recent progress on metal–organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chemical Engineering Journal, 2021, 405: 126960
CrossRef
Google scholar
|
[77] |
Liu B, Shioyama H, Akita T, Xu Q. Metal–organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 2008, 130(16): 5390–5391
CrossRef
Google scholar
|
[78] |
Zhang L, Fischer J M T A, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles D J, Huang K, Feng S, Brown C L, Yao X. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. Journal of the American Chemical Society, 2018, 140(34): 10757–10763
CrossRef
Google scholar
|
[79] |
Wu X Q, Zhao J, Wu Y P, Dong W W, Li D S, Li J R, Zhang Q. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Applied Materials & Interfaces, 2018, 10(15): 12740–12749
CrossRef
Google scholar
|
[80] |
Ying J, Jiang G, Cano Z P, Han L, Yang X Y, Chen Z. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40: 88–94
CrossRef
Google scholar
|
[81] |
Ying J, Li J, Jiang G, Cano Z P, Ma Z, Zhong C, Su D, Chen Z. Metal–organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225: 496–503
CrossRef
Google scholar
|
[82] |
Liu H, Wu S, Tian N, Yan F, You C, Yang Y. Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8(45): 23699–23723
CrossRef
Google scholar
|
[83] |
Zhang W, Minett A I, Gao M, Zhao J, Razal J M, Wallace G G, Romeo T, Chen J. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Advanced Energy Materials, 2011, 1(4): 671–677
CrossRef
Google scholar
|
[84] |
Chen H, Liu T, Ren J, He H, Cao Y, Wang N, Guo Z. Synergistic carbon nanotube aerogel-Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4(9): 3238–3244
CrossRef
Google scholar
|
[85] |
Ye J, Zhou M, Le Y, Cheng B, Yu J. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2020, 267: 118689
CrossRef
Google scholar
|
[86] |
Atwa M, Li X, Wang Z, Dull S, Xu S, Tong X, Tang R, Nishihara H, Prinz F, Birss V. Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. Materials Horizons, 2021, 8(9): 2451–2462
CrossRef
Google scholar
|
[87] |
Cherevko S, Kulyk N, Mayrhofer K J. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275–298
CrossRef
Google scholar
|
[88] |
Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2015, 7(2): 1170–1179
CrossRef
Google scholar
|
[89] |
Lai Q, Zheng J, Tang Z, Bi D, Zhao J, Liang Y. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angewandte Chemie International Edition, 2020, 59(29): 11999–12006
CrossRef
Google scholar
|
[90] |
Ning X, Li Y, Ming J, Wang Q, Wang H, Cao Y, Peng F, Yang Y, Yu H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10(6): 1589–1596
CrossRef
Google scholar
|
[91] |
Li J, Yang X Y. Membrane catalysts eliminate trace pollutants. Chem, 2022, 8(6): 1551–1553
CrossRef
Google scholar
|
[92] |
Ning X, Yu H, Peng F, Wang H. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325: 136–144
CrossRef
Google scholar
|
[93] |
Xiao Y X, Ying J, Chen J B, Dong Y, Yang X, Tian G, Wu J, Janiak C, Ozoemena K I, Yang X Y. Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d–π effect. Chemistry of Materials, 2022, 34(8): 3705–3714
CrossRef
Google scholar
|
[94] |
Bulushev D A, Zacharska M, Lisitsyn A S, Podyacheva O Y, Hage F S, Ramasse Q M, Bangert U, Bulusheva L G. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catalysis, 2016, 6(6): 3442–3451
CrossRef
Google scholar
|
[95] |
Luo H, Liu Y, Dimitrov S D, Steier L, Guo S, Li X, Feng J, Xie F, Fang Y, Sapelkin A, Wang X, Titirici M M. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8(29): 14690–14696
CrossRef
Google scholar
|
[96] |
Schmies H, Hornberger E, Anke B, Jurzinsky T, Nong H N, Dionigi F, Kühl S, Drnec J, Lerch M, Cremers C, Strasser P. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts. Chemistry of Materials, 2018, 30(20): 7287–7295
CrossRef
Google scholar
|
[97] |
Hornberger E, Merzdorf T, Schmies H, Hübner J, Klingenhof M, Gernert U, Kroschel M, Anke B, Lerch M, Schmidt J, Thomas A, Chattot R, Martens I, Drnec J, Strasser P. Impact of carbon N-doping and pyridinic-N content on the fuel cell performance and durability of carbon-supported Pt nanoparticle catalysts. ACS Applied Materials & Interfaces, 2022, 14(16): 18420–18430
CrossRef
Google scholar
|
[98] |
Duan J, Chen S, Jaroniec M, Qiao S Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalysis, 2015, 5(9): 5207–5234
CrossRef
Google scholar
|
[99] |
Sawant S V, Patwardhan A W, Joshi J B, Dasgupta K. Boron doped carbon nanotubes: synthesis, characterization and emerging applications—a review. Chemical Engineering Journal, 2022, 427: 131616
CrossRef
Google scholar
|
[100] |
Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793
CrossRef
Google scholar
|
[101] |
Hu M, Yao Z, Li L, Tsou Y H, Kuang L, Xu X, Zhang W, Wang X. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H2-SCR. Nanoscale, 2018, 10(21): 10203–10212
CrossRef
Google scholar
|
[102] |
Yao R, Gu J, He H, Yu T. Improved electrocatalytic activity and durability of Pt nanoparticles supported on boron-doped carbon black. Catalysts, 2020, 10(8): 862
CrossRef
Google scholar
|
[103] |
Samad S, Loh K S, Wong W Y, Lee T K, Sunarso J, Chong S T, Daud W R W. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43(16): 7823–7854
CrossRef
Google scholar
|
[104] |
Kwon K, Jin S A, Pak C, Chang H, Joo S H, Lee H I, Kim J H, Kim J M. Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catalysis Today, 2011, 164(1): 186–189
CrossRef
Google scholar
|
[105] |
Guo Y, Park T, Yi J W, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Advanced Materials, 2019, 31(17): 1807134
CrossRef
Google scholar
|
[106] |
Higgins D, Hoque M A, Seo M H, Wang R, Hassan F, Choi J Y, Pritzker M Y A, Zhang J, Chen Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Advanced Functional Materials, 2014, 24(27): 4325–4336
CrossRef
Google scholar
|
[107] |
Hoque M A, Hassan F M, Higgins D, Choi J Y, Pritzker M, Knights S, Ye S, Chen Z. Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Advanced Materials, 2015, 27(7): 1229–1234
CrossRef
Google scholar
|
[108] |
Hoque M A, Hassan F M, Seo M H, Choi J Y, Pritzker M, Knights S, Ye S, Chen Z. Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19: 27–38
CrossRef
Google scholar
|
[109] |
Hoque M A, Hassan F M, Jauhar A M, Jiang G, Pritzker M, Choi J Y, Knights S, Ye S, Chen Z. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93–98
CrossRef
Google scholar
|
[110] |
Xu C, Hoque M A, Chiu G, Sung T, Chen Z. Stabilization of platinum-nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6(113): 112226–112231
CrossRef
Google scholar
|
[111] |
Fan J J, Fan Y J, Wang R X, Xiang S, Tang H G, Sun S G. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2017, 5(36): 19467–19475
CrossRef
Google scholar
|
[112] |
Kiciński W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: synthesis and applications. Carbon, 2014, 68: 1–32
CrossRef
Google scholar
|
[113] |
Kang Y, Guo Y, Zhao J, Jiang B, Guo J, Tang Y, Li H, Malgras V, Amin M A, Nara H, Sugahara Y, Yamauchi Y, Asahi T. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small, 2022, 18(31): 2203411
CrossRef
Google scholar
|
[114] |
Li Z, Lin J, Li B, Yu C, Wang H, Li Q. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. Journal of Energy Storage, 2021, 44: 103437
CrossRef
Google scholar
|
[115] |
Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
CrossRef
Google scholar
|
[116] |
Shin D Y, Sung K W, Ahn H J. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Applied Surface Science, 2019, 478: 499–504
CrossRef
Google scholar
|
[117] |
Chang Y, Hong F, Liu J, Xie M, Zhang Q, He C, Niu H, Liu J. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. Carbon, 2015, 87: 424–433
CrossRef
Google scholar
|
[118] |
Zhu J, He G, Tian Z, Liang L, Shen P K. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194: 276–282
CrossRef
Google scholar
|
[119] |
Paul R, Du F, Dai L, Ding Y, Wang Z L, Wei F, Roy A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Advanced Materials, 2019, 31(13): 1805598
CrossRef
Google scholar
|
[120] |
Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480
CrossRef
Google scholar
|
[121] |
Fan S S, Shen L, Dong Y, Tian G, Wu S M, Chang G G, Janiak C, Wei P, Wu J S, Yang X Y. sp3-like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. Journal of Energy Chemistry, 2021, 57: 189–197
CrossRef
Google scholar
|
[122] |
Ji S G, Kwon H C, Kim T H, Sim U, Choi C H. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells?. ACS Catalysis, 2022, 12(12): 7317–7325
CrossRef
Google scholar
|
[123] |
Tong X, Zhang J, Zhang G, Wei Q, Chenitz R, Claverie J P, Sun S. Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chemistry of Materials, 2017, 29(21): 9579–9587
CrossRef
Google scholar
|
[124] |
Karuppannan M, Kim Y, Gok S, Lee E, Hwang J Y, Jang J H, Cho Y H, Lim T, Sung Y E, Kwon O J. A highly durable carbon-nanofiber-supported Pt–C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy & Environmental Science, 2019, 12(9): 2820–2829
CrossRef
Google scholar
|
[125] |
Xiao H, Xue S, Zhang J, Zhao M, Ma J, Chen S, Zheng Z, Jia J, Wu H. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408: 127271
CrossRef
Google scholar
|
[126] |
Dang Q, Sun Y, Wang X, Zhu W, Chen Y, Liao F, Huang H, Shao M. Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257: 117905
CrossRef
Google scholar
|
[127] |
Xiao H, Zhang J, Zhao M, Ma J, Li Y, Hu T, Zheng Z, Jia J, Wu H. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. Journal of Power Sources, 2020, 451: 227770
CrossRef
Google scholar
|
[128] |
Yan M, Jiang Q, Zhang T, Wang J, Yang L, Lu Z, He H, Fu Y, Wang X, Huang H. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6(37): 18165–18172
CrossRef
Google scholar
|
[129] |
Sun Y, Li M, Qu X, Zheng S, Alvarez P J, Fu H. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Applied Materials & Interfaces, 2021, 13(25): 29541–29550
CrossRef
Google scholar
|
[130] |
Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources, 2012, 208: 96–119
CrossRef
Google scholar
|
[131] |
Hu G, Xiao Y, Ying J. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings. International Journal of Molecular Sciences, 2021, 22(20): 11087
CrossRef
Google scholar
|
[132] |
Chen J, Ying J, Xiao Y, Dong Y, Ozoemena K I, Lenaerts S, Yang X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Science China Materials, 2022, 65(10): 1–9
CrossRef
Google scholar
|
[133] |
Park K, Ohnishi T, Goto M, So M, Takenaka S, Tsuge Y, Inoue G. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45(3): 1867–1877
CrossRef
Google scholar
|
[134] |
Islam J, Kim S K, Kim K H, Lee E, Park G G. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46(1): 1133–1143
CrossRef
Google scholar
|
[135] |
Barbosa E C, Parreira L S, de Freitas I C, Aveiro L R, de Oliveira D C, dos Santos M C, Camargo P H C. Pt-decorated TiO2 materials supported on carbon: increasing activities and stabilities toward the ORR by tuning the Pt loading. ACS Applied Energy Materials, 2019, 2(8): 5759–5768
CrossRef
Google scholar
|
[136] |
Lee W J, Bera S, Woo H, Kim H G, Baek J H, Hong W, Park J Y, Oh S J, Kwon S H. In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition. Chemistry of Materials, 2022, 34(13): 5949–5959
CrossRef
Google scholar
|
[137] |
de Oliveira D C, Silva W O, Chatenet M, Lima F H B. NiOx-Pt/C nanocomposites: highly active electrocatalysts for the electrochemical oxidation of hydrazine. Applied Catalysis B: Environmental, 2017, 201: 22–28
CrossRef
Google scholar
|
[138] |
Gu B, Sun T, Wang Y, Long Y, Fu J, Fan G. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorganic Chemistry Frontiers, 2022, 9(10): 2204–2212
CrossRef
Google scholar
|
[139] |
Song Z, Wang B, Cheng N, Yang L, Banham D, Li R, Ye S, Sun X. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5(20): 9760–9767
CrossRef
Google scholar
|
[140] |
Ma Z, Li S, Wu L, Song L, Jiang G, Liang Z, Su D, Zhu Y, Adzic R R, Wang J X, Chen Z. NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69: 104455
CrossRef
Google scholar
|
[141] |
He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir, 2011, 27(9): 5582–5588
CrossRef
Google scholar
|
[142] |
Wei L, Fan Y J, Ma J H, Tao L H, Wang R X, Zhong J P, Wang H. Highly dispersed Pt nanoparticles supported on manganese oxide-poly(3,4-ethylenedioxythiophene)-carbon nanotubes composite for enhanced methanol electrooxidation. Journal of Power Sources, 2013, 238: 157–164
CrossRef
Google scholar
|
[143] |
Wang R X, Fan J J, Fan Y J, Zhong J P, Wang L, Sun S G, Shen X C. Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale, 2014, 6(24): 14999–15007
CrossRef
Google scholar
|
[144] |
Wang R X, Fan Y J, Wang L, Wu L N, Sun S N, Sun S G. Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. Journal of Power Sources, 2015, 287: 341–348
CrossRef
Google scholar
|
[145] |
Eßbach C, Senkovska I, Unmüssig T, Fischer A, Kaskel S. Selective alcohol electrooxidation by ZIF-8 functionalized Pt/carbon catalyst. ACS Applied Materials & Interfaces, 2019, 11(23): 20915–20922
CrossRef
Google scholar
|
[146] |
Choi J, Lee Y J, Park D, Jeong H, Shin S, Yun H, Lim J, Han J, Kim E J, Jeon S S, Jung Y, Lee H, Kim B J. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy & Environmental Science, 2020, 13(12): 4921–4929
CrossRef
Google scholar
|
[147] |
Xiao Y X, Ying J, Tian G, Tao Y, Wei H, Fan S Y, Sun Z H, Zou W J, Hu J, Chang G G, Li W, Yang X Y, Janiak C. Highly dispersed PtPd on graphitic nanofibers and its heavy d–π effect. Applied Catalysis B: Environmental, 2019, 259: 118080
CrossRef
Google scholar
|
[148] |
Dong Y, Li J, Yang X Y. Cu catalysts detour hydrogen evolution reaction. Matter, 2022, 5(8): 2537–2540
CrossRef
Google scholar
|
[149] |
Bai G, Liu C, Gao Z, Lu B, Tong X, Guo X, Yang N. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation. Small, 2019, 15(38): 1902951
CrossRef
Google scholar
|
[150] |
Dong Y, Chen J B, Ying J, Xiao Y X, Tian G, Symes M D, Yang X Y. Efficient water dissociation on confined ultrafine Pt via pyridinic N-enhanced heavy d−π interaction. Chemistry of Materials, 2022, 34(18): 8271–8279
CrossRef
Google scholar
|
[151] |
Fan H, Cheng M, Wang L, Song Y, Cui Y, Wang R. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy, 2018, 48: 1–9
CrossRef
Google scholar
|
/
〈 | 〉 |