REVIEW ARTICLE

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

  • Ying Zhang ,
  • Zhaohui Wang
Expand
  • College of Materials Science and Engineering, Hunan University, Changsha 410004, China
sunnywang@hnu.edu.cn

Received date: 03 Dec 2022

Accepted date: 18 Jan 2023

Published date: 15 Aug 2023

Copyright

2023 Higher Education Press

Abstract

Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

Cite this article

Ying Zhang , Zhaohui Wang . Review on cellulose paper-based electrodes for sustainable batteries with high energy densities[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(8) : 1010 -1027 . DOI: 10.1007/s11705-023-2307-y

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Outstanding Youth Scientist Foundation of Hunan Province (Grant No. 2021JJ10017), China, and Fundamental Research Funds for the Central Universities.
1
Li H, Zhang X, Zhao Z, Hu Z, Liu X, Yu G. Flexible sodium-ion based energy storage devices: recent progress and challenges. Energy Storage Materials, 2020, 26: 83–104

DOI

2
Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375

DOI

3
Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G. Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782

DOI

4
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Advanced Materials, 2021, 33(28): e2000619

DOI

5
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338

DOI

6
Qian G, Liao X, Zhu Y, Pan F, Chen X, Yang Y. Designing flexible lithium-ion batteries by dtructural engineering. ACS Energy Letters, 2019, 4(3): 690–701

DOI

7
Dühnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T. Toward green battery cells: perspective on materials and technologies. Small Methods, 2020, 4(7): 2000039

DOI

8
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243

DOI

9
Xie J, Lu Y C. A retrospective on lithium-ion batteries. Nature Communications, 2020, 11(1): 2499

DOI

10
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123–134

DOI

11
Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C, Kim J Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013, 6(8): 2414

DOI

12
Foreman E, Zakri W, Hossein Sanatimoghaddam M, Modjtahedi A, Pathak S, Kashkooli A G, Garafolo N G, Farhad S. A review of inactive materials and components of flexible lithium-ion batteries. Advanced Sustainable Systems, 2017, 1(11): 1700061

DOI

13
Dominko R, Gaberšček M, Drofenik J, Bele M, Jamnik J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709–3716

DOI

14
Song J, Zhou M, Yi R, Xu T, Gordin M L, Tang D, Yu Z, Regula M, Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced Functional Materials, 2014, 24(37): 5904–5910

DOI

15
Bauer W, Nötzel D. Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceramics International, 2014, 40(3): 4591–4598

DOI

16
Susarla N, Ahmed S, Dees D W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. Journal of Power Sources, 2018, 378: 660–670

DOI

17
Li C C, Wang Y W. Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance. Journal of the Electrochemical Society, 2011, 158(12): A1361

DOI

18
Ahmed S, Nelson P A, Gallagher K G, Dees D W. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing. Journal of Power Sources, 2016, 322: 169–178

DOI

19
Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Advanced Materials, 2018, 30(48): e1802014

DOI

20
Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021, 485: 229321

DOI

21
Hu H, Wu M. Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8(15): 7066–7082

DOI

22
Chen Z, Christensen L, Dahn J R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. Journal of the Electrochemical Society, 2003, 150(8): A1073

DOI

23
Wu Q, Ha S, Prakash J, Dees D W, Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta, 2013, 114: 1–6

DOI

24
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393

DOI

25
Li T, Chen C, Brozena A H, Zhu J Y, Xu L, Driemeier C, Dai J, Rojas O J, Isogai A, Wågberg L, Hu L. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56

DOI

26
Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43(5): 1519–1542

DOI

27
Thomas B, Raj M C, B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 2018, 118(24): 11575–11625

DOI

28
Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn S J, Hu L. Structure-property-function relationships of natural and engineered wood. Nature Reviews. Materials, 2020, 5(9): 642–666

DOI

29
Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D. Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20(4): 1523–1545

DOI

30
Wang Z, Lee Y H, Kim S W, Seo J Y, Lee S Y, Nyholm L. Why cellulose-based electrochemical energy storage devices?. Advanced Materials, 2021, 33(28): e2000892

DOI

31
Chen R, Yang Y, Huang Q, Ling H, Li X, Ren J, Zhang K, Sun R, Wang X. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32: 208–215

DOI

32
Huang Q, Yang Y, Chen R, Wang X. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers. EcoMat, 2021, 3(1): e12076

DOI

33
Cao D, Xing Y, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Zhu H. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Advanced Materials, 2019, 31(14): e1807313

DOI

34
Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L. Nanocellulose structured paper-based lithium metal batteries. ACS Applied Energy Materials, 2018, 1(8): 4341–4350

DOI

35
Zhan R, Wang X, Chen Z, Seh Z W, Wang L, Sun Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Advanced Energy Materials, 2021, 11(35): 2101565

DOI

36
Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154–3165

DOI

37
Tayeb A H, Amini E, Ghasemi S, Tajvidi M. Cellulose nanomaterials-binding properties and applications: a review. Molecules, 2018, 23(10): 2684

DOI

38
Porzio J, Scown C D. Life-cycle assessment considerations for batteries and battery materials. Advanced Energy Materials, 2021, 11(33): 2100771

DOI

39
Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2(21): 7711–7716

DOI

40
Wang Z, Xu C, Tammela P, Huo J, Strømme M, Edström K, Gustafsson T, Nyholm L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(27): 14109–14115

DOI

41
Zhang Z, Li Y, Cui X, Guan S, Tu L, Tang H, Li Z, Li J. Understanding the advantageous features of bacterial cellulose-based separator in Li−S battery. Advanced Materials Interfaces, 2022, 10(1): 2201730

DOI

42
Zhang Z, Yang Y, Guo W, Chang G, Li J. Synergistic capture and conversion of soluble polysulfides in Li−S batteries with composite freestanding carbonaceous interlayers. ACS Applied Materials & Interfaces, 2022, 14(7): 9231–9241

DOI

43
Kim J H, Lee D, Lee Y H, Chen W, Lee S Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials, 2019, 31(20): e1804826

DOI

44
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters, 2022, 14(1): 104

DOI

45
Sun Z, Qu K, You Y, Huang Z, Liu S, Li J, Hu Q, Guo Z. Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9(12): 7278–7300

DOI

46
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021, 33(48): e2101368

DOI

47
Chen W, Yu H, Lee S Y, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47(8): 2837–2872

DOI

48
Zhu H, Luo W, Ciesielski P N, Fang Z, Zhu J Y, Henriksson G, Himmel M E, Hu L. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305–9374

DOI

49
Wang S, Yu L, Wang S, Zhang L, Chen L, Xu X, Song Z, Liu H, Chen C. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13(1): 3408

DOI

50
Abdul Khalil H P S, Bhat A H, Ireana Yusra A F. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 2012, 87(2): 963–979

DOI

51
Zhang L, Liu Z, Cui G, Chen L. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164

DOI

52
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994

DOI

53
Li Z, Chen C, Xie H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith L M, Pan X, Briber R, Shi S Q, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244

DOI

54
Su Z, Yang Y, Huang Q, Chen R, Ge W, Fang Z, Huang F, Wang X. Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125: 100917

DOI

55
Wang Z, Tammela P, Strømme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Advanced Energy Materials, 2017, 7(18): 1700130

DOI

56
Lu H, Gui Y, Zheng L, Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 2013, 50(1): 121–128

DOI

57
Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied Polymer Symposium, 1983, 37: 815–827

58
Heidarian M, Mihranyan A, Stromme M, Ek R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. International Journal of Pharmaceutics, 2006, 323(1−2): 139–145

DOI

59
Omran A A B, Mohammed A, Sapuan S M, Ilyas R A, Asyraf M R M, Rahimian Koloor S S, Petru M. Micro- and nanocellulose in polymer composite materials: a review. Polymers, 2021, 13(2): 231

DOI

60
Haldar D, Purkait M K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250: 116937

DOI

61
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible electronics based on micro/nanostructured paper. Advanced Materials, 2018, 30(51): e1801588

DOI

62
Zhang Y Z, Wang Y, Cheng T, Lai W Y, Pang H, Huang W. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44(15): 5181–5199

DOI

63
Wang Z, Xu C, Tammela P, Zhang P, Edström K, Gustafsson T, Strømme M, Nyholm L. Conducting polymer paper-based cathodes for high-areal-capacity lithium-organic batteries. Energy Technology, 2015, 3(6): 563–569

DOI

64
Zhou S, Nyholm L, Stromme M, Wang Z. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research, 2019, 52(8): 2232–2243

DOI

65
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466

DOI

66
Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105

DOI

67
Tripathi B, Srivastava N, Sharma K B, Zagorskiy D, Katiyar R S. MWNT/cellulose based nanocomposite electrodes for ultrafast flexible Li-ion battery. Macromolecular Symposia, 2017, 376(1): 1700042

DOI

68
Du X, Zhang Z, Liu W, Deng Y. Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy, 2017, 35: 299–320

DOI

69
Hu L, Choi J W, Yang Y, Jeong S, La Mantia F, Cui L F, Cui Y. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21490–21494

DOI

70
Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Letters, 2009, 9(10): 3635–3639

DOI

71
Dong L, Xu C, Li Y, Huang Z H, Kang F, Yang Q H, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685

DOI

72
Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y. Paper-based electrodes for flexible energy storage devices. Advanced Science, 2017, 4(7): 1700107

DOI

73
Wang Z, Carlsson D O, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano, 2015, 9(7): 7563–7571

DOI

74
Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13: 346–354

DOI

75
Tian W, VahidMohammadi A, Reid M S, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi M M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Advanced Materials, 2019, 31(41): e1902977

DOI

76
Kim H, Guccini V, Lu H, Salazar-Alvarez G, Lindbergh G, Cornell A. Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Applied Energy Materials, 2018, 2(2): 1241–1250

DOI

77
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D. Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20(1): 571–582

DOI

78
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D. Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87: 232–239

DOI

79
Jabbour L, Chaussy D, Beneventi D, Destro M, Penazzi N, Gerbaldi C. Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp & Paper Research Journal, 2012, 27(2): 472–475

DOI

80
Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S. Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243: 372–379

DOI

81
Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3(28): 14894–14901

DOI

82
Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848

DOI

83
Wang Z, Malti A, Ouyang L, Tu D, Tian W, Wågberg L, Hamedi M M. Copper-plated paper for high-performance lithium-ion batteries. Small, 2018, 14(48): e1803313

DOI

84
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100

DOI

85
Zeng L, Chen S, Liu M, Cheng H M, Qiu L. Integrated paper-based flexible Li-ion batteries made by a rod coating method. ACS Applied Materials & Interfaces, 2019, 11(50): 46776–46782

DOI

86
Kim J H, Lee Y H, Cho S J, Gwon J G, Cho H J, Jang M, Lee S Y, Lee S Y. Nanomat Li−S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186

DOI

87
Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A. Flexible paper electrodes for Li-ion batteries usinglow smount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Applied Materials & Interfaces, 2016, 8(28): 18097–18106

DOI

88
Wang Y, He Z Y, Wang Y X, Fan C, Liu C R, Peng Q L, Chen J J, Feng Z S. Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. Journal of Colloid and Interface Science, 2018, 512: 398–403

DOI

89
Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D. Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20(35): 7344

DOI

90
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy, 2013, 2(5): 794–800

DOI

91
Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(20): 10695–10701

DOI

92
Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454

DOI

93
Lu H, Hagberg J, Lindbergh G, Cornell A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy, 2017, 39: 140–150

DOI

94
Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2(1): 138–145

DOI

95
Kuang Y, Chen C, Pastel G, Li Y, Song J, Mi R, Kong W, Liu B, Jiang Y, Yang K, Hu L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Advanced Energy Materials, 2018, 8(33): 1802398

DOI

96
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A, 2013, 1(15): 4671

DOI

97
Choi K H, Cho S J, Chun S J, Yoo J T, Lee C K, Kim W, Wu Q, Park S B, Choi D H, Lee S Y, Lee S Y. Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Letters, 2014, 14(10): 5677–5686

DOI

98
Cho S J, Choi K H, Yoo J T, Kim J H, Lee Y H, Chun S J, Park S B, Choi D H, Wu Q, Lee S Y, Lee S Y. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 25(38): 6029–6040

DOI

99
Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Advanced Energy Materials, 2019, 9(33): 1901457

DOI

100
Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285

DOI

101
Lu H, Guccini V, Kim H, Salazar-Alvarez G, Lindbergh G, Cornell A. Effects of different manufacturing processes on TEMPO-oxidized carboxylated cellulose nanofiber performance as binder for flexible lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37712–37720

DOI

102
Lu H, Hagberg J, Lindbergh G, Cornell A. Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers. Batteries, 2018, 4(2): 17

DOI

103
Li Y, Zhang H, Xiao Z, Wang R. Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/carbon nanotubes/nanofibrillated celluloses composite electrode for high-performance lithium-ion battery. Frontiers in Chemistry, 2019, 7: 555

DOI

104
El Baradai O, Beneventi D, Alloin F, Bultel Y, Chaussy D. Use of cellulose nanofibers as an electrode binder for lithium ion battery screen printing on a paper separator. Nanomaterials, 2018, 8(12): 982

DOI

105
Kim J M, Park C H, Wu Q, Lee S Y. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Advanced Energy Materials, 2016, 6(2): 1501594

DOI

106
Zhou S, Qiu Z, Strømme M, Wang Z. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose. Advanced Functional Materials, 2020, 30(49): 2005757

DOI

107
Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Advanced Energy Materials, 2018, 8(23): 1801007

DOI

108
Wu J, Zhang X, Ju Z, Wang L, Hui Z, Mayilvahanan K, Takeuchi K J, Marschilok A C, West A C, Takeuchi E S, Yu G. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Advanced Materials, 2021, 33(26): e2101275

DOI

109
Park S H, King P J, Tian R, Boland C S, Coelho J, Zhang C, McBean P, McEvoy N, Kremer M P, Daly D, Coleman J N, Nicolosi V. High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4(7): 560–567

DOI

Outlines

/