Frontiers of Chemical Science and Engineering >
Review on cellulose paper-based electrodes for sustainable batteries with high energy densities
Received date: 03 Dec 2022
Accepted date: 18 Jan 2023
Published date: 15 Aug 2023
Copyright
Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.
Key words: cellulose; paper electrodes; Li-ion batteries; high energy density
Ying Zhang , Zhaohui Wang . Review on cellulose paper-based electrodes for sustainable batteries with high energy densities[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(8) : 1010 -1027 . DOI: 10.1007/s11705-023-2307-y
1 |
Li H, Zhang X, Zhao Z, Hu Z, Liu X, Yu G. Flexible sodium-ion based energy storage devices: recent progress and challenges. Energy Storage Materials, 2020, 26: 83–104
|
2 |
Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375
|
3 |
Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G. Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782
|
4 |
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Advanced Materials, 2021, 33(28): e2000619
|
5 |
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
|
6 |
Qian G, Liao X, Zhu Y, Pan F, Chen X, Yang Y. Designing flexible lithium-ion batteries by dtructural engineering. ACS Energy Letters, 2019, 4(3): 690–701
|
7 |
Dühnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T. Toward green battery cells: perspective on materials and technologies. Small Methods, 2020, 4(7): 2000039
|
8 |
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243
|
9 |
Xie J, Lu Y C. A retrospective on lithium-ion batteries. Nature Communications, 2020, 11(1): 2499
|
10 |
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123–134
|
11 |
Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C, Kim J Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013, 6(8): 2414
|
12 |
Foreman E, Zakri W, Hossein Sanatimoghaddam M, Modjtahedi A, Pathak S, Kashkooli A G, Garafolo N G, Farhad S. A review of inactive materials and components of flexible lithium-ion batteries. Advanced Sustainable Systems, 2017, 1(11): 1700061
|
13 |
Dominko R, Gaberšček M, Drofenik J, Bele M, Jamnik J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709–3716
|
14 |
Song J, Zhou M, Yi R, Xu T, Gordin M L, Tang D, Yu Z, Regula M, Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced Functional Materials, 2014, 24(37): 5904–5910
|
15 |
Bauer W, Nötzel D. Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceramics International, 2014, 40(3): 4591–4598
|
16 |
Susarla N, Ahmed S, Dees D W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. Journal of Power Sources, 2018, 378: 660–670
|
17 |
Li C C, Wang Y W. Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance. Journal of the Electrochemical Society, 2011, 158(12): A1361
|
18 |
Ahmed S, Nelson P A, Gallagher K G, Dees D W. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing. Journal of Power Sources, 2016, 322: 169–178
|
19 |
Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Advanced Materials, 2018, 30(48): e1802014
|
20 |
Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021, 485: 229321
|
21 |
Hu H, Wu M. Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8(15): 7066–7082
|
22 |
Chen Z, Christensen L, Dahn J R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. Journal of the Electrochemical Society, 2003, 150(8): A1073
|
23 |
Wu Q, Ha S, Prakash J, Dees D W, Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta, 2013, 114: 1–6
|
24 |
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393
|
25 |
Li T, Chen C, Brozena A H, Zhu J Y, Xu L, Driemeier C, Dai J, Rojas O J, Isogai A, Wågberg L, Hu L. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56
|
26 |
Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43(5): 1519–1542
|
27 |
Thomas B, Raj M C, B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 2018, 118(24): 11575–11625
|
28 |
Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn S J, Hu L. Structure-property-function relationships of natural and engineered wood. Nature Reviews. Materials, 2020, 5(9): 642–666
|
29 |
Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D. Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20(4): 1523–1545
|
30 |
Wang Z, Lee Y H, Kim S W, Seo J Y, Lee S Y, Nyholm L. Why cellulose-based electrochemical energy storage devices?. Advanced Materials, 2021, 33(28): e2000892
|
31 |
Chen R, Yang Y, Huang Q, Ling H, Li X, Ren J, Zhang K, Sun R, Wang X. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32: 208–215
|
32 |
Huang Q, Yang Y, Chen R, Wang X. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers. EcoMat, 2021, 3(1): e12076
|
33 |
Cao D, Xing Y, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Zhu H. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Advanced Materials, 2019, 31(14): e1807313
|
34 |
Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L. Nanocellulose structured paper-based lithium metal batteries. ACS Applied Energy Materials, 2018, 1(8): 4341–4350
|
35 |
Zhan R, Wang X, Chen Z, Seh Z W, Wang L, Sun Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Advanced Energy Materials, 2021, 11(35): 2101565
|
36 |
Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154–3165
|
37 |
Tayeb A H, Amini E, Ghasemi S, Tajvidi M. Cellulose nanomaterials-binding properties and applications: a review. Molecules, 2018, 23(10): 2684
|
38 |
Porzio J, Scown C D. Life-cycle assessment considerations for batteries and battery materials. Advanced Energy Materials, 2021, 11(33): 2100771
|
39 |
Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2(21): 7711–7716
|
40 |
Wang Z, Xu C, Tammela P, Huo J, Strømme M, Edström K, Gustafsson T, Nyholm L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(27): 14109–14115
|
41 |
Zhang Z, Li Y, Cui X, Guan S, Tu L, Tang H, Li Z, Li J. Understanding the advantageous features of bacterial cellulose-based separator in Li−S battery. Advanced Materials Interfaces, 2022, 10(1): 2201730
|
42 |
Zhang Z, Yang Y, Guo W, Chang G, Li J. Synergistic capture and conversion of soluble polysulfides in Li−S batteries with composite freestanding carbonaceous interlayers. ACS Applied Materials & Interfaces, 2022, 14(7): 9231–9241
|
43 |
Kim J H, Lee D, Lee Y H, Chen W, Lee S Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials, 2019, 31(20): e1804826
|
44 |
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters, 2022, 14(1): 104
|
45 |
Sun Z, Qu K, You Y, Huang Z, Liu S, Li J, Hu Q, Guo Z. Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9(12): 7278–7300
|
46 |
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021, 33(48): e2101368
|
47 |
Chen W, Yu H, Lee S Y, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47(8): 2837–2872
|
48 |
Zhu H, Luo W, Ciesielski P N, Fang Z, Zhu J Y, Henriksson G, Himmel M E, Hu L. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305–9374
|
49 |
Wang S, Yu L, Wang S, Zhang L, Chen L, Xu X, Song Z, Liu H, Chen C. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13(1): 3408
|
50 |
Abdul Khalil H P S, Bhat A H, Ireana Yusra A F. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 2012, 87(2): 963–979
|
51 |
Zhang L, Liu Z, Cui G, Chen L. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164
|
52 |
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994
|
53 |
Li Z, Chen C, Xie H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith L M, Pan X, Briber R, Shi S Q, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244
|
54 |
Su Z, Yang Y, Huang Q, Chen R, Ge W, Fang Z, Huang F, Wang X. Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125: 100917
|
55 |
Wang Z, Tammela P, Strømme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Advanced Energy Materials, 2017, 7(18): 1700130
|
56 |
Lu H, Gui Y, Zheng L, Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 2013, 50(1): 121–128
|
57 |
Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied Polymer Symposium, 1983, 37: 815–827
|
58 |
Heidarian M, Mihranyan A, Stromme M, Ek R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. International Journal of Pharmaceutics, 2006, 323(1−2): 139–145
|
59 |
Omran A A B, Mohammed A, Sapuan S M, Ilyas R A, Asyraf M R M, Rahimian Koloor S S, Petru M. Micro- and nanocellulose in polymer composite materials: a review. Polymers, 2021, 13(2): 231
|
60 |
Haldar D, Purkait M K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250: 116937
|
61 |
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible electronics based on micro/nanostructured paper. Advanced Materials, 2018, 30(51): e1801588
|
62 |
Zhang Y Z, Wang Y, Cheng T, Lai W Y, Pang H, Huang W. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44(15): 5181–5199
|
63 |
Wang Z, Xu C, Tammela P, Zhang P, Edström K, Gustafsson T, Strømme M, Nyholm L. Conducting polymer paper-based cathodes for high-areal-capacity lithium-organic batteries. Energy Technology, 2015, 3(6): 563–569
|
64 |
Zhou S, Nyholm L, Stromme M, Wang Z. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research, 2019, 52(8): 2232–2243
|
65 |
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466
|
66 |
Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105
|
67 |
Tripathi B, Srivastava N, Sharma K B, Zagorskiy D, Katiyar R S. MWNT/cellulose based nanocomposite electrodes for ultrafast flexible Li-ion battery. Macromolecular Symposia, 2017, 376(1): 1700042
|
68 |
Du X, Zhang Z, Liu W, Deng Y. Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy, 2017, 35: 299–320
|
69 |
Hu L, Choi J W, Yang Y, Jeong S, La Mantia F, Cui L F, Cui Y. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21490–21494
|
70 |
Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Letters, 2009, 9(10): 3635–3639
|
71 |
Dong L, Xu C, Li Y, Huang Z H, Kang F, Yang Q H, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685
|
72 |
Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y. Paper-based electrodes for flexible energy storage devices. Advanced Science, 2017, 4(7): 1700107
|
73 |
Wang Z, Carlsson D O, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano, 2015, 9(7): 7563–7571
|
74 |
Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13: 346–354
|
75 |
Tian W, VahidMohammadi A, Reid M S, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi M M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Advanced Materials, 2019, 31(41): e1902977
|
76 |
Kim H, Guccini V, Lu H, Salazar-Alvarez G, Lindbergh G, Cornell A. Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Applied Energy Materials, 2018, 2(2): 1241–1250
|
77 |
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D. Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20(1): 571–582
|
78 |
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D. Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87: 232–239
|
79 |
Jabbour L, Chaussy D, Beneventi D, Destro M, Penazzi N, Gerbaldi C. Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp & Paper Research Journal, 2012, 27(2): 472–475
|
80 |
Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S. Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243: 372–379
|
81 |
Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3(28): 14894–14901
|
82 |
Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848
|
83 |
Wang Z, Malti A, Ouyang L, Tu D, Tian W, Wågberg L, Hamedi M M. Copper-plated paper for high-performance lithium-ion batteries. Small, 2018, 14(48): e1803313
|
84 |
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100
|
85 |
Zeng L, Chen S, Liu M, Cheng H M, Qiu L. Integrated paper-based flexible Li-ion batteries made by a rod coating method. ACS Applied Materials & Interfaces, 2019, 11(50): 46776–46782
|
86 |
Kim J H, Lee Y H, Cho S J, Gwon J G, Cho H J, Jang M, Lee S Y, Lee S Y. Nanomat Li−S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186
|
87 |
Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A. Flexible paper electrodes for Li-ion batteries usinglow smount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Applied Materials & Interfaces, 2016, 8(28): 18097–18106
|
88 |
Wang Y, He Z Y, Wang Y X, Fan C, Liu C R, Peng Q L, Chen J J, Feng Z S. Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. Journal of Colloid and Interface Science, 2018, 512: 398–403
|
89 |
Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D. Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20(35): 7344
|
90 |
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy, 2013, 2(5): 794–800
|
91 |
Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(20): 10695–10701
|
92 |
Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454
|
93 |
Lu H, Hagberg J, Lindbergh G, Cornell A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy, 2017, 39: 140–150
|
94 |
Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2(1): 138–145
|
95 |
Kuang Y, Chen C, Pastel G, Li Y, Song J, Mi R, Kong W, Liu B, Jiang Y, Yang K, Hu L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Advanced Energy Materials, 2018, 8(33): 1802398
|
96 |
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A, 2013, 1(15): 4671
|
97 |
Choi K H, Cho S J, Chun S J, Yoo J T, Lee C K, Kim W, Wu Q, Park S B, Choi D H, Lee S Y, Lee S Y. Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Letters, 2014, 14(10): 5677–5686
|
98 |
Cho S J, Choi K H, Yoo J T, Kim J H, Lee Y H, Chun S J, Park S B, Choi D H, Wu Q, Lee S Y, Lee S Y. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 25(38): 6029–6040
|
99 |
Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Advanced Energy Materials, 2019, 9(33): 1901457
|
100 |
Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285
|
101 |
Lu H, Guccini V, Kim H, Salazar-Alvarez G, Lindbergh G, Cornell A. Effects of different manufacturing processes on TEMPO-oxidized carboxylated cellulose nanofiber performance as binder for flexible lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37712–37720
|
102 |
Lu H, Hagberg J, Lindbergh G, Cornell A. Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers. Batteries, 2018, 4(2): 17
|
103 |
Li Y, Zhang H, Xiao Z, Wang R. Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/carbon nanotubes/nanofibrillated celluloses composite electrode for high-performance lithium-ion battery. Frontiers in Chemistry, 2019, 7: 555
|
104 |
El Baradai O, Beneventi D, Alloin F, Bultel Y, Chaussy D. Use of cellulose nanofibers as an electrode binder for lithium ion battery screen printing on a paper separator. Nanomaterials, 2018, 8(12): 982
|
105 |
Kim J M, Park C H, Wu Q, Lee S Y. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Advanced Energy Materials, 2016, 6(2): 1501594
|
106 |
Zhou S, Qiu Z, Strømme M, Wang Z. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose. Advanced Functional Materials, 2020, 30(49): 2005757
|
107 |
Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Advanced Energy Materials, 2018, 8(23): 1801007
|
108 |
Wu J, Zhang X, Ju Z, Wang L, Hui Z, Mayilvahanan K, Takeuchi K J, Marschilok A C, West A C, Takeuchi E S, Yu G. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Advanced Materials, 2021, 33(26): e2101275
|
109 |
Park S H, King P J, Tian R, Boland C S, Coelho J, Zhang C, McBean P, McEvoy N, Kremer M P, Daly D, Coleman J N, Nicolosi V. High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4(7): 560–567
|
/
〈 | 〉 |