Review on cellulose paper-based electrodes for sustainable batteries with high energy densities
Ying Zhang, Zhaohui Wang
Review on cellulose paper-based electrodes for sustainable batteries with high energy densities
Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.
cellulose / paper electrodes / Li-ion batteries / high energy density
[1] |
Li H, Zhang X, Zhao Z, Hu Z, Liu X, Yu G. Flexible sodium-ion based energy storage devices: recent progress and challenges. Energy Storage Materials, 2020, 26: 83–104
CrossRef
Google scholar
|
[2] |
Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375
CrossRef
Google scholar
|
[3] |
Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G. Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782
CrossRef
Google scholar
|
[4] |
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Advanced Materials, 2021, 33(28): e2000619
CrossRef
Google scholar
|
[5] |
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
CrossRef
Google scholar
|
[6] |
Qian G, Liao X, Zhu Y, Pan F, Chen X, Yang Y. Designing flexible lithium-ion batteries by dtructural engineering. ACS Energy Letters, 2019, 4(3): 690–701
CrossRef
Google scholar
|
[7] |
Dühnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T. Toward green battery cells: perspective on materials and technologies. Small Methods, 2020, 4(7): 2000039
CrossRef
Google scholar
|
[8] |
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243
CrossRef
Google scholar
|
[9] |
Xie J, Lu Y C. A retrospective on lithium-ion batteries. Nature Communications, 2020, 11(1): 2499
CrossRef
Google scholar
|
[10] |
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123–134
CrossRef
Google scholar
|
[11] |
Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C, Kim J Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013, 6(8): 2414
CrossRef
Google scholar
|
[12] |
Foreman E, Zakri W, Hossein Sanatimoghaddam M, Modjtahedi A, Pathak S, Kashkooli A G, Garafolo N G, Farhad S. A review of inactive materials and components of flexible lithium-ion batteries. Advanced Sustainable Systems, 2017, 1(11): 1700061
CrossRef
Google scholar
|
[13] |
Dominko R, Gaberšček M, Drofenik J, Bele M, Jamnik J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709–3716
CrossRef
Google scholar
|
[14] |
Song J, Zhou M, Yi R, Xu T, Gordin M L, Tang D, Yu Z, Regula M, Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced Functional Materials, 2014, 24(37): 5904–5910
CrossRef
Google scholar
|
[15] |
Bauer W, Nötzel D. Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceramics International, 2014, 40(3): 4591–4598
CrossRef
Google scholar
|
[16] |
Susarla N, Ahmed S, Dees D W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. Journal of Power Sources, 2018, 378: 660–670
CrossRef
Google scholar
|
[17] |
Li C C, Wang Y W. Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance. Journal of the Electrochemical Society, 2011, 158(12): A1361
CrossRef
Google scholar
|
[18] |
Ahmed S, Nelson P A, Gallagher K G, Dees D W. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing. Journal of Power Sources, 2016, 322: 169–178
CrossRef
Google scholar
|
[19] |
Jin S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Advanced Materials, 2018, 30(48): e1802014
CrossRef
Google scholar
|
[20] |
Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021, 485: 229321
CrossRef
Google scholar
|
[21] |
Hu H, Wu M. Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8(15): 7066–7082
CrossRef
Google scholar
|
[22] |
Chen Z, Christensen L, Dahn J R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. Journal of the Electrochemical Society, 2003, 150(8): A1073
CrossRef
Google scholar
|
[23] |
Wu Q, Ha S, Prakash J, Dees D W, Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta, 2013, 114: 1–6
CrossRef
Google scholar
|
[24] |
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393
CrossRef
Google scholar
|
[25] |
Li T, Chen C, Brozena A H, Zhu J Y, Xu L, Driemeier C, Dai J, Rojas O J, Isogai A, Wågberg L, Hu L. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56
CrossRef
Google scholar
|
[26] |
Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43(5): 1519–1542
CrossRef
Google scholar
|
[27] |
Thomas B, Raj M C, B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 2018, 118(24): 11575–11625
CrossRef
Google scholar
|
[28] |
Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn S J, Hu L. Structure-property-function relationships of natural and engineered wood. Nature Reviews. Materials, 2020, 5(9): 642–666
CrossRef
Google scholar
|
[29] |
Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D. Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20(4): 1523–1545
CrossRef
Google scholar
|
[30] |
Wang Z, Lee Y H, Kim S W, Seo J Y, Lee S Y, Nyholm L. Why cellulose-based electrochemical energy storage devices?. Advanced Materials, 2021, 33(28): e2000892
CrossRef
Google scholar
|
[31] |
Chen R, Yang Y, Huang Q, Ling H, Li X, Ren J, Zhang K, Sun R, Wang X. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32: 208–215
CrossRef
Google scholar
|
[32] |
Huang Q, Yang Y, Chen R, Wang X. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers. EcoMat, 2021, 3(1): e12076
CrossRef
Google scholar
|
[33] |
Cao D, Xing Y, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Zhu H. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Advanced Materials, 2019, 31(14): e1807313
CrossRef
Google scholar
|
[34] |
Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L. Nanocellulose structured paper-based lithium metal batteries. ACS Applied Energy Materials, 2018, 1(8): 4341–4350
CrossRef
Google scholar
|
[35] |
Zhan R, Wang X, Chen Z, Seh Z W, Wang L, Sun Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Advanced Energy Materials, 2021, 11(35): 2101565
CrossRef
Google scholar
|
[36] |
Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154–3165
CrossRef
Google scholar
|
[37] |
Tayeb A H, Amini E, Ghasemi S, Tajvidi M. Cellulose nanomaterials-binding properties and applications: a review. Molecules, 2018, 23(10): 2684
CrossRef
Google scholar
|
[38] |
Porzio J, Scown C D. Life-cycle assessment considerations for batteries and battery materials. Advanced Energy Materials, 2021, 11(33): 2100771
CrossRef
Google scholar
|
[39] |
Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2(21): 7711–7716
CrossRef
Google scholar
|
[40] |
Wang Z, Xu C, Tammela P, Huo J, Strømme M, Edström K, Gustafsson T, Nyholm L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(27): 14109–14115
CrossRef
Google scholar
|
[41] |
Zhang Z, Li Y, Cui X, Guan S, Tu L, Tang H, Li Z, Li J. Understanding the advantageous features of bacterial cellulose-based separator in Li−S battery. Advanced Materials Interfaces, 2022, 10(1): 2201730
CrossRef
Google scholar
|
[42] |
Zhang Z, Yang Y, Guo W, Chang G, Li J. Synergistic capture and conversion of soluble polysulfides in Li−S batteries with composite freestanding carbonaceous interlayers. ACS Applied Materials & Interfaces, 2022, 14(7): 9231–9241
CrossRef
Google scholar
|
[43] |
Kim J H, Lee D, Lee Y H, Chen W, Lee S Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials, 2019, 31(20): e1804826
CrossRef
Google scholar
|
[44] |
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters, 2022, 14(1): 104
CrossRef
Google scholar
|
[45] |
Sun Z, Qu K, You Y, Huang Z, Liu S, Li J, Hu Q, Guo Z. Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9(12): 7278–7300
CrossRef
Google scholar
|
[46] |
Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021, 33(48): e2101368
CrossRef
Google scholar
|
[47] |
Chen W, Yu H, Lee S Y, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47(8): 2837–2872
CrossRef
Google scholar
|
[48] |
Zhu H, Luo W, Ciesielski P N, Fang Z, Zhu J Y, Henriksson G, Himmel M E, Hu L. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305–9374
CrossRef
Google scholar
|
[49] |
Wang S, Yu L, Wang S, Zhang L, Chen L, Xu X, Song Z, Liu H, Chen C. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13(1): 3408
CrossRef
Google scholar
|
[50] |
Abdul Khalil H P S, Bhat A H, Ireana Yusra A F. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 2012, 87(2): 963–979
CrossRef
Google scholar
|
[51] |
Zhang L, Liu Z, Cui G, Chen L. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164
CrossRef
Google scholar
|
[52] |
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994
CrossRef
Google scholar
|
[53] |
Li Z, Chen C, Xie H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith L M, Pan X, Briber R, Shi S Q, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244
CrossRef
Google scholar
|
[54] |
Su Z, Yang Y, Huang Q, Chen R, Ge W, Fang Z, Huang F, Wang X. Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125: 100917
CrossRef
Google scholar
|
[55] |
Wang Z, Tammela P, Strømme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Advanced Energy Materials, 2017, 7(18): 1700130
CrossRef
Google scholar
|
[56] |
Lu H, Gui Y, Zheng L, Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 2013, 50(1): 121–128
CrossRef
Google scholar
|
[57] |
Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied Polymer Symposium, 1983, 37: 815–827
|
[58] |
Heidarian M, Mihranyan A, Stromme M, Ek R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. International Journal of Pharmaceutics, 2006, 323(1−2): 139–145
CrossRef
Google scholar
|
[59] |
Omran A A B, Mohammed A, Sapuan S M, Ilyas R A, Asyraf M R M, Rahimian Koloor S S, Petru M. Micro- and nanocellulose in polymer composite materials: a review. Polymers, 2021, 13(2): 231
CrossRef
Google scholar
|
[60] |
Haldar D, Purkait M K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250: 116937
CrossRef
Google scholar
|
[61] |
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible electronics based on micro/nanostructured paper. Advanced Materials, 2018, 30(51): e1801588
CrossRef
Google scholar
|
[62] |
Zhang Y Z, Wang Y, Cheng T, Lai W Y, Pang H, Huang W. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44(15): 5181–5199
CrossRef
Google scholar
|
[63] |
Wang Z, Xu C, Tammela P, Zhang P, Edström K, Gustafsson T, Strømme M, Nyholm L. Conducting polymer paper-based cathodes for high-areal-capacity lithium-organic batteries. Energy Technology, 2015, 3(6): 563–569
CrossRef
Google scholar
|
[64] |
Zhou S, Nyholm L, Stromme M, Wang Z. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research, 2019, 52(8): 2232–2243
CrossRef
Google scholar
|
[65] |
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466
CrossRef
Google scholar
|
[66] |
Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105
CrossRef
Google scholar
|
[67] |
Tripathi B, Srivastava N, Sharma K B, Zagorskiy D, Katiyar R S. MWNT/cellulose based nanocomposite electrodes for ultrafast flexible Li-ion battery. Macromolecular Symposia, 2017, 376(1): 1700042
CrossRef
Google scholar
|
[68] |
Du X, Zhang Z, Liu W, Deng Y. Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy, 2017, 35: 299–320
CrossRef
Google scholar
|
[69] |
Hu L, Choi J W, Yang Y, Jeong S, La Mantia F, Cui L F, Cui Y. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21490–21494
CrossRef
Google scholar
|
[70] |
Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Letters, 2009, 9(10): 3635–3639
CrossRef
Google scholar
|
[71] |
Dong L, Xu C, Li Y, Huang Z H, Kang F, Yang Q H, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685
CrossRef
Google scholar
|
[72] |
Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y. Paper-based electrodes for flexible energy storage devices. Advanced Science, 2017, 4(7): 1700107
CrossRef
Google scholar
|
[73] |
Wang Z, Carlsson D O, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano, 2015, 9(7): 7563–7571
CrossRef
Google scholar
|
[74] |
Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13: 346–354
CrossRef
Google scholar
|
[75] |
Tian W, VahidMohammadi A, Reid M S, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi M M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Advanced Materials, 2019, 31(41): e1902977
CrossRef
Google scholar
|
[76] |
Kim H, Guccini V, Lu H, Salazar-Alvarez G, Lindbergh G, Cornell A. Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Applied Energy Materials, 2018, 2(2): 1241–1250
CrossRef
Google scholar
|
[77] |
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D. Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20(1): 571–582
CrossRef
Google scholar
|
[78] |
Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D. Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87: 232–239
CrossRef
Google scholar
|
[79] |
Jabbour L, Chaussy D, Beneventi D, Destro M, Penazzi N, Gerbaldi C. Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp & Paper Research Journal, 2012, 27(2): 472–475
CrossRef
Google scholar
|
[80] |
Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S. Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243: 372–379
CrossRef
Google scholar
|
[81] |
Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3(28): 14894–14901
CrossRef
Google scholar
|
[82] |
Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848
CrossRef
Google scholar
|
[83] |
Wang Z, Malti A, Ouyang L, Tu D, Tian W, Wågberg L, Hamedi M M. Copper-plated paper for high-performance lithium-ion batteries. Small, 2018, 14(48): e1803313
CrossRef
Google scholar
|
[84] |
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100
CrossRef
Google scholar
|
[85] |
Zeng L, Chen S, Liu M, Cheng H M, Qiu L. Integrated paper-based flexible Li-ion batteries made by a rod coating method. ACS Applied Materials & Interfaces, 2019, 11(50): 46776–46782
CrossRef
Google scholar
|
[86] |
Kim J H, Lee Y H, Cho S J, Gwon J G, Cho H J, Jang M, Lee S Y, Lee S Y. Nanomat Li−S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186
CrossRef
Google scholar
|
[87] |
Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A. Flexible paper electrodes for Li-ion batteries usinglow smount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Applied Materials & Interfaces, 2016, 8(28): 18097–18106
CrossRef
Google scholar
|
[88] |
Wang Y, He Z Y, Wang Y X, Fan C, Liu C R, Peng Q L, Chen J J, Feng Z S. Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. Journal of Colloid and Interface Science, 2018, 512: 398–403
CrossRef
Google scholar
|
[89] |
Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D. Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20(35): 7344
CrossRef
Google scholar
|
[90] |
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy, 2013, 2(5): 794–800
CrossRef
Google scholar
|
[91] |
Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(20): 10695–10701
CrossRef
Google scholar
|
[92] |
Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454
CrossRef
Google scholar
|
[93] |
Lu H, Hagberg J, Lindbergh G, Cornell A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy, 2017, 39: 140–150
CrossRef
Google scholar
|
[94] |
Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2(1): 138–145
CrossRef
Google scholar
|
[95] |
Kuang Y, Chen C, Pastel G, Li Y, Song J, Mi R, Kong W, Liu B, Jiang Y, Yang K, Hu L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Advanced Energy Materials, 2018, 8(33): 1802398
CrossRef
Google scholar
|
[96] |
Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A, 2013, 1(15): 4671
CrossRef
Google scholar
|
[97] |
Choi K H, Cho S J, Chun S J, Yoo J T, Lee C K, Kim W, Wu Q, Park S B, Choi D H, Lee S Y, Lee S Y. Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Letters, 2014, 14(10): 5677–5686
CrossRef
Google scholar
|
[98] |
Cho S J, Choi K H, Yoo J T, Kim J H, Lee Y H, Chun S J, Park S B, Choi D H, Wu Q, Lee S Y, Lee S Y. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 25(38): 6029–6040
CrossRef
Google scholar
|
[99] |
Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Advanced Energy Materials, 2019, 9(33): 1901457
CrossRef
Google scholar
|
[100] |
Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285
CrossRef
Google scholar
|
[101] |
Lu H, Guccini V, Kim H, Salazar-Alvarez G, Lindbergh G, Cornell A. Effects of different manufacturing processes on TEMPO-oxidized carboxylated cellulose nanofiber performance as binder for flexible lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37712–37720
CrossRef
Google scholar
|
[102] |
Lu H, Hagberg J, Lindbergh G, Cornell A. Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers. Batteries, 2018, 4(2): 17
CrossRef
Google scholar
|
[103] |
Li Y, Zhang H, Xiao Z, Wang R. Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/carbon nanotubes/nanofibrillated celluloses composite electrode for high-performance lithium-ion battery. Frontiers in Chemistry, 2019, 7: 555
CrossRef
Google scholar
|
[104] |
El Baradai O, Beneventi D, Alloin F, Bultel Y, Chaussy D. Use of cellulose nanofibers as an electrode binder for lithium ion battery screen printing on a paper separator. Nanomaterials, 2018, 8(12): 982
CrossRef
Google scholar
|
[105] |
Kim J M, Park C H, Wu Q, Lee S Y. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Advanced Energy Materials, 2016, 6(2): 1501594
CrossRef
Google scholar
|
[106] |
Zhou S, Qiu Z, Strømme M, Wang Z. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose. Advanced Functional Materials, 2020, 30(49): 2005757
CrossRef
Google scholar
|
[107] |
Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Advanced Energy Materials, 2018, 8(23): 1801007
CrossRef
Google scholar
|
[108] |
Wu J, Zhang X, Ju Z, Wang L, Hui Z, Mayilvahanan K, Takeuchi K J, Marschilok A C, West A C, Takeuchi E S, Yu G. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Advanced Materials, 2021, 33(26): e2101275
CrossRef
Google scholar
|
[109] |
Park S H, King P J, Tian R, Boland C S, Coelho J, Zhang C, McBean P, McEvoy N, Kremer M P, Daly D, Coleman J N, Nicolosi V. High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4(7): 560–567
CrossRef
Google scholar
|
/
〈 | 〉 |