REVIEW ARTICLE

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

  • Jia-Xin Guo 1 ,
  • Wen-Bo Tang 1 ,
  • Xiaosong Xiong 1 ,
  • He Liu , 2 ,
  • Tao Wang 1 ,
  • Yuping Wu , 1 ,
  • Xin-Bing Cheng , 1
Expand
  • 1. School of Energy and Environment, Southeast University, Nanjing 211189, China
  • 2. School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
003554@nuist.edu.cn
wuyp@seu.edu.cn
chengxb@seu.edu.cn

Received date: 28 Sep 2022

Accepted date: 26 Nov 2022

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press

Abstract

With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

Cite this article

Jia-Xin Guo , Wen-Bo Tang , Xiaosong Xiong , He Liu , Tao Wang , Yuping Wu , Xin-Bing Cheng . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1354 -1371 . DOI: 10.1007/s11705-022-2286-4

Acknowledgements

This work is supported by the National Key R & D Program of China (Grant No. 2021YFB2400400), the National Natural Science Foundation of China (Grant Nos. 22179070, U1932220), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220073), the Project on Carbon Emission Peak and Neutrality of Jiangsu Province (Grant No. BE2022031-4), and the Fundamental Research Funds for the Central Universities (Grant No. 2242022R10082).
1
Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Letters, 2010, 10(4): 1486–1491

DOI

2
Chen L, Fan X, Hu E, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang X, Wang C. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem, 2019, 5(4): 896–912

DOI

3
Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44(17): 5926–5940

DOI

4
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176

DOI

5
Shen X, Zhang X Q, Ding F, Huang J Q, Xu R, Chen X, Yan C, Su F Y, Chen C M, Liu X, Zhang Q. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Material Advances, 2021, 2021(1): 1205324

DOI

6
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537

DOI

7
Peng J, Wu D, Song F, Wang S, Niu Q, Xu J, Lu P, Li H, Chen L, Wu F. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Advanced Functional Materials, 2022, 32(2): 2105776

DOI

8
Xu X, Jiao X, Kapitanova O O, Wang J, Volkov V S, Liu Y, Xiong S. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Advanced Energy Materials, 2022, 12(19): 2200244

DOI

9
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X Q, Zhang J G. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3): 180–186

DOI

10
Liu T, Yu L, Lu J, Zhou T, Huang X, Cai Z, Dai A, Gim J, Ren Y, Xiao X, Holt M V, Chu Y S, Arslan I, Wen J, Amine K. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12(1): 6024

DOI

11
Xu X Q, Jiang F N, Yang S J, Xiao Y, Liu H, Liu F Y, Liu L, Cheng X B. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69(10): 205–210

DOI

12
Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790–801

DOI

13
Qiao Y, Li Q, Cheng X B, Liu F, Yang Y, Lu Z, Zhao J, Wu J, Liu H, Yang S, Liu Y. Three-dimensional superlithiophilic interphase for dendrite-free lithium metal anodes. ACS Applied Materials & Interfaces, 2020, 12(5): 5767–5774

DOI

14
Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Advanced Materials, 2019, 31(37): 1902785

DOI

15
Xu X, Liu Y, Hwang J Y, Kapitanova O O, Song Z, Sun Y K, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 2020, 10(44): 2002390

DOI

16
Zhang F, Sun Y, Wang Z, Fu D, Li J, Hu J, Xu J, Wu X. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(21): 23774–23780

DOI

17
Wang Z, Zhang H, Han R, Xu J, Pan A, Zhang F, Huang D, Wei Y, Wang L, Song H, Liu Y, Shen Y, Hu J, Wu X. Establish an advanced electrolyte/graphite interphase by an ionic liquid-based localized highly concentrated electrolyte for low-temperature and rapid-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12023–12029

DOI

18
Heist A, Lee S H. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. Journal of the Electrochemical Society, 2019, 166(10): A1860–A1866

DOI

19
Xu S, Xu R, Yu T, Chen K, Sun C, Hu G, Bai S, Cheng H M, Sun Z, Li F. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy & Environmental Science, 2022, 15(8): 3379–3387

DOI

20
Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3(4): e1601659

DOI

21
Zhou J Q, Qian T, Liu J, Wang M F, Zhang L, Yan C L. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Letters, 2019, 19(5): 3066–3073

DOI

22
Zhou Q, Yang X Y, Xiong X S, Zhang Q Y, Peng B H, Chen Y H, Wang Z G, Fu L J, Wu Y P. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Advanced Energy Materials, 2022, 12(39): 2201991

DOI

23
Chai S, Zhang Y, Wang Y, He Q, Zhou S, Pan A. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience, 2022, 2(5): 494–508

24
Yan Z, Pan H Y, Wang J Y, Chen R S, Li Q, Luo F, Yu X Q, Li H. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40(6): 1357–1365

DOI

25
Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1(1): 24–37

DOI

26
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7(1): 12032

DOI

27
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9): 739–746

DOI

28
Ren X D, Zou L F, Jiao S H, Mei D H, Engelhard M H, Li Q Y, Lee H Y, Niu C J, Adams B D, Wang C M, Liu J, Zhang J G, Xu W. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters, 2019, 4(4): 896–903

DOI

29
Cheng X B, Liu H, Yuan H, Peng H J, Tang C, Huang J Q, Zhang Q. A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1(1): 38–50

DOI

30
Ren Y, Shin W, Manthiram A. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design. Advanced Energy Materials, 2022, 12(19): 2200190

DOI

31
Xiong X S, Yan W Q, Zhu Y S, Liu L L, Fu L J, Chen Y H, Yu N F, Wu Y P, Wang B, Xiao R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Advanced Energy Materials, 2022, 12(13): 2103112

DOI

32
Xiong X S, Sun R, Yan W Q, Qiao Q, Zhu Y S, Liu L L, Fu L J, Yu N F, Wu Y P, Wang B. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(26): 13814–13820

DOI

33
Xiong X S, Zhi R Y, Zhou Q, Yan W Q, Zhu Y S, Chen Y H, Fu L J, Yu N F, Wu Y P. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2(13): 4240–4245

DOI

34
Meng X, Lau K C, Zhou H, Ghosh S K, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Material Advances, 2021, 2021(1): 9786201

DOI

35
Fan W J, Sun Z W, Yuan Y, Yuan X H, You C, Huang Q H, Ye J, Fu L J, Kondratiev V, Wu Y P. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(14): 7645–7652

DOI

36
Zhao Q, Chen X, Hou W, Ye B R, Zhang Y Q, Xia X H, Wang J S. A facile, scalable, high stability lithium metal anode. SusMat, 2022, 2(1): 104–112

DOI

37
Varenne F, Alper J P, Miserque F, Bongu C S, Boulineau A, Martin J F, Dauvois V, Demarque A, Bouhier M, Boismain F, Franger S, Herlin-Boime N, Le Caër S. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustainable Energy & Fuels, 2018, 2(9): 2100–2108

DOI

38
Lorandi F, Liu T, Fantin M, Manser J, Al-Obeidi A, Zimmerman M, Matyjaszewski K, Whitacre J F. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience, 2021, 24(6): 102578

DOI

39
Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries. Journal of the Electrochemical Society, 2021, 168(1): 010522

DOI

40
Wu C, Zhou Y, Zhu X L, Zhan M Z, Yang H X, Qian J. Research progress on high concentration electrolytes for Li metal batteries. Acta Physico-Chimica Sinica, 2021, 37(2): 2008044 (in Chinese)

41
Su L, Zhao X, Yi M, Charalambous H, Celio H, Liu Y, Manthiram A. Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Advanced Energy Materials, 2022, 12(36): 2201911

DOI

42
Geng Z, Lu J Z, Li Q, Qiu J L, Wang Y, Peng J Y, Huang J, Li W J, Yu X Q, Li H. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23(8): 646–652

DOI

43
Lu H T, Yang C P, Wang F F, Wang L, Zhou J H, Chen W, Yang Q H. Interfacial high-concentration electrolyte for stable lithium metal anode: theory, design, and demonstration. Nano Research, 2022, 15(10): 1–8

DOI

44
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49(95): 11194–11196

DOI

45
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423

DOI

46
Jiang L L, Yan C, Yao Y X, Cai W, Huang J Q, Zhang Q. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 2021, 60(7): 3402–3406

DOI

47
Jiang J C, Fan Q N, Liu H K, Chou S L, Konstantinov K, Wang J Z. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Applied Materials & Interfaces, 2021, 13(24): 28405–28414

DOI

48
Wang Y, Zheng H, Hong L, Jiang F, Liu Y, Feng X, Zhou R, Sun Y, Xiang H. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445(13): 136802

DOI

49
Hong L, Ren H, Wang Y, Liu Y, Xiang H. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at –20 °C. Electrochimica Acta, 2022, 414(14): 140238

DOI

50
Zheng H, Xiang H F, Jiang F Y, Liu Y C, Sun Y, Liang X, Feng Y Z, Yu Y. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440

DOI

51
Zhang J, Li Q, Zeng Y, Tang Z, Sun D, Huang D, Peng Z, Tang Y, Wang H. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51(8): 660–670

DOI

52
Sayah S, Ghosh A, Baazizi M, Amine R, Dahbi M, Amine Y, Ghamouss F, Amine K. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98(11): 107336

DOI

53
Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362–6371

DOI

54
Takeyoshi J, Kobori N, Kanamura K. Electrochemical evaluation of lithium-metal anode in highly concentrated ethylene carbonate based electrolytes. Electrochemistry, 2020, 88(6): 540–547

DOI

55
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426

DOI

56
Maeyoshi Y, Ding D, Kubota M, Ueda H, Abe K, Kanamura K, Abe H. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator. ACS Applied Materials & Interfaces, 2019, 11(29): 25833–25843

DOI

57
Zhou A X, Zhang J K, Chen M, Yue J M, Lv T S, Liu B H, Zhu X Z, Qin K, Feng G, Suo L M. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes. Advanced Materials, 2022, 34(38): 2207040

DOI

58
Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Advanced Materials, 2018, 30(21): 1706102

DOI

59
Lu Y M, Sun Q T, Liu Y, Yu P P, Zhang Y Y, Lu J C, Huang H C, Yang H, Cheng T. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Physical Chemistry Chemical Physics, 2022, 24(31): 18684–18690

DOI

60
Angarita-Gomez S, Balbuena P B. Ion mobility and solvation complexes at liquid-solid interfaces in dilute, high concentration, and localized high concentration electrolytes. Materials Advances, 2022, 3(15): 6352–6363

DOI

61
Ren X, Gao P, Zou L, Jiao S, Cao X, Zhang X, Jia H, Engelhard M H, Matthews B E, Wu H, Lee H, Niu C, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28603–28613

DOI

62
Wu Y Z, Wang A P, Hu Q, Liang H M, Xu H, Wang L, He X M. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Central Science, 2022, 8(9): 1290–1298

DOI

63
Yang S J, Xu X Q, Cheng X B, Wang X M, Chen J X, Xiao Y, Yuan H, Liu H, Chen A B, Zhu W C, Huang J, Zhang Q. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058 (in Chinese)

64
Tang X, Zhang W C, Cao L Y. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41(3): 726–729

DOI

65
Langdon J, Manthiram A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Advanced Materials, 2022, 34(41): 2205188

DOI

66
Holoubek J, Yan Q, Liu H, Hopkins E J, Wu Z, Yu S, Luo J, Pascal T A, Chen Z, Liu P. Oxidative stabilization of dilute ether electrolytes via anion modification. ACS Energy Letters, 2022, 7(2): 675–682

DOI

67
Han W W, Ardhi R E A, Liu G C. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41(2): 353–355

DOI

68
Chen X, Qin L, Sun J, Zhang S, Xiao D, Wu Y. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angewandte Chemie International Edition, 2022, 61(33): 202207018

DOI

69
Liu H, Sun X, Cheng X B, Guo C, Yu F, Bao W Z, Wang T, Li J F, Zhang Q. Working principles of lithium metal anode in pouch cells. Advanced Energy Materials, 2022, 12(39): 2202518

DOI

70
Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries?. Advanced Energy Materials, 2021, 11(10): 2003416

DOI

71
Moon J, Kim D O, Bekaert L, Song M, Chung J, Lee D, Hubin A, Lim J. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13(1): 4538–4549

DOI

72
Wang S, Qu J, Wu F, Yan K, Zhang C. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Applied Materials & Interfaces, 2020, 12(7): 8366–8375

DOI

73
Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(49): 22194–22201

DOI

74
Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 2022, 61(20): e202201406

DOI

75
Cao X, Gao P, Ren X, Zou L, Engelhard M H, Matthews B E, Hu J, Niu C, Liu D, Arey B W, Wang C, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020357118

DOI

76
Ren F, Li Z, Chen J, Huguet P, Peng Z, Deabate S. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Applied Materials & Interfaces, 2022, 14(3): 4211–4219

DOI

77
Yang S J, Yao N, Xu X Q, Jiang F N, Chen X, Liu H, Yuan H, Huang J Q, Cheng X B. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(35): 19664–19668

DOI

78
Jiang F N, Yang S J, Liu H, Cheng X B, Liu L, Xiang R, Zhang Q, Kaskel S, Huang J Q. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1(4): 506–536

DOI

79
Liu Y, Xu X, Kapitanova O O, Evdokimov P V, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Advanced Energy Materials, 2022, 12(9): 2103589

DOI

80
Wen Z X, Fang W Q, Wu X Y, Qin Z Y, Kang H, Chen L, Zhang N, Liu X H, Chen G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Advanced Functional Materials, 2022, 32(35): 2204768

DOI

81
Wang H, Wu L, Xue B, Wang F, Luo Z, Zhang X, Calvez L, Fan P, Fan B. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Applied Materials & Interfaces, 2022, 14(13): 15214–15224

DOI

82
Xu X Q, Xu R, Cheng X B, Xiao Y, Peng H J, Yuan H, Liu F Y. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 56(17): 391–394

83
Yu L, Chen S R, Lee H, Zhang L C, Engelhard M H, Li Q Y, Jiao S H, Liu J, Xu W, Zhang J G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Letters, 2018, 3(9): 2059–2067

DOI

84
Zheng Y, Soto F A, Ponce V, Seminario J M, Cao X, Zhang J G, Balbuena P B. Localized high concentration electrolyte behavior near a lithium-metal anode surface. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(43): 25047–25055

DOI

85
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q, Wang D, Xu W, Zhang J G. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Advanced Functional Materials, 2020, 30(24): 2001285

DOI

86
Yoo D J, Yang S, Kim K J, Choi J W. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(35): 14869–14876

DOI

87
Li T, Li Y, Sun Y L, Qian Z F, Wang R H. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Letters, 2021, 3(6): 838–844

DOI

88
Xiong X S, Zhou Q, Zhu Y S, Chen Y H, Fu L J, Liu L L, Yu N F, Wu Y P, van Ree T. In pursuit of a dendrite-free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy & Fuels, 2020, 34(9): 10503–10512

DOI

89
Perez Beltran S, Cao X, Zhang J G, El-Khoury P Z, Balbuena P B. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(32): 17459–17473

DOI

90
Wu Q, Tang X, Qian Y, Duan J D, Wang R, Teng J H, Li J. Enhancing the cycling stability for lithium-metal batteries by localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2021, 4(9): 10234–10243

DOI

91
Zhu S, Chen J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44(8): 48–56

DOI

92
Pham T D, Bin Faheem A, Lee K K. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small, 2021, 17(46): 2103375

DOI

93
Maeyoshi Y, Yoshii K, Shikano M, Sakaebe H. Improving cycling stability of vanadium sulfide (VS4) as a Li battery cathode material using a localized high-concentration carbonate-based electrolyte. ACS Applied Energy Materials, 2021, 4(12): 13627–13635

DOI

94
Maeyoshi Y, Yoshii K, Sakaebe H. Stable lithium metal plating/stripping in a localized high-concentration cyclic carbonate-based electrolyte. Electrochemistry, 2022, 90(4): 047001–047001

DOI

95
Shi P, Hou L P, Jin C B, Xiao Y, Yao Y X, Xie J, Li B Q, Zhang X Q, Zhang Q. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. Journal of the American Chemical Society, 2022, 144(1): 212–218

DOI

96
Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q. Dead lithium formation in lithium metal batteries: a phase field model. Journal of Energy Chemistry, 2022, 71(8): 29–35

DOI

97
Liu Y, Sun Q T, Yu P P, Ma B Y, Yang H, Zhang J Y, Xie M, Cheng T. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(2): 632–639

DOI

98
Liu M C, Li X, Zhai B Y, Zeng Z Q, Hu W, Lei S, Zhang H, Cheng S J, Xie J. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries. Batteries & Supercaps, 2022, 5(5): e202100407

DOI

99
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z, Gao Y, Zheng Z, Deng Y, Wang C. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95(5): 107014–107025

DOI

100
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(16): 9001–9009

DOI

101
Zhu C N, Sun C C, Li R H, Weng S T, Fan L W, Wang X F, Chen L X, Noked M, Fan X L. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Letters, 2022, 7(4): 1338–1347

DOI

102
Huangzhang E C, Zeng X Y, Yang T X, Liu H Y, Sun C H, Fan Y C, Hu H L, Zhao X Y, Zuo X X, Nan J M. A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439(24): 135534

DOI

103
Chen A L, Shang N, Ouyang Y, Mo L, Zhou C Y, Tjiu W W, Lai F, Miao Y E, Liu T. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2(2): 192–200

104
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries. ACS Applied Materials & Interfaces, 2021, 13(48): 57430–57441

DOI

105
Bai F W, Li Y, Chen Z Y, Zhou Y C, Li C Z, Li T. Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548(32): 232045

DOI

106
Fang M M, Chen J E, Chen B Y, Wang J H. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19903–19913

DOI

107
Xia M, Lin M, Liu G, Cheng Y, Jiao T, Fu A, Yang Y, Wang M, Zheng J. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442(16): 136351

DOI

108
Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094–7102

DOI

109
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999

DOI

110
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877–1892

DOI

111
Liu H, Li T, Xu X Q, Shi P, Zhang X Q, Xu R, Cheng X B, Huang J Q. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37(9): 152–158

DOI

112
Afrifah V A, Kim J M, Lee Y M, Phiri I, Lee Y G, Ryou S Y. Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548(32): 232017

DOI

113
Zhou T, Zhao Y, El Kazzi M, Choi J W, Coskun A. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 2022, 61(19): e202115884

DOI

114
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Enabling high-voltage lithium-metal batteries under practical conditions. Joule, 2019, 3(7): 1662–1676

DOI

115
Lin S, Hua H, Li Z, Zhao J. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Applied Materials & Interfaces, 2020, 12(30): 33710–33718

DOI

116
Wang W, Zhang J, Yang Q, Wang S, Wang W, Li B. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Applied Materials & Interfaces, 2020, 12(20): 22901–22909

DOI

117
Xiang H F, Shi P C, Bhattacharya P, Chen X L, Mei D H, Bowden M E, Zheng J M, Zhang J G, Xu W. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318(18): 170–177

DOI

118
Peng X D, Lin Y K, Wang Y, Li Y J, Zhao T S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy, 2022, 96(11): 107102

DOI

119
MoonHChoS JYuD ELeeS Y. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy & Environmental Materials, 2022

120
Pham T D, Bin Faheem A, Kim J, Oh H M, Lee K K. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small, 2022, 18(14): 2107492

DOI

121
Pham T D, Lee K K. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small, 2021, 17(20): 2100133

DOI

122
Xue H, He W, Li J, Zhang D, Wang X, Zhou S, Yang W. Stable dendrite-free high-voltage lithium metal batteries enabled by localized high concentration fluoroethylene carbonate based electrolytes. ACS Applied Energy Materials, 2022, 5(10): 12553–12560

DOI

123
Xu X Q, Cheng X B, Jiang F N, Yang S J, Ren D S, Shi P, Hsu H J, Yuan H, Huang J Q, Ouyang M G, Zhang Q. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2(4): 435–444

DOI

124
Jiang F N, Yang S J, Cheng X B, Shi P, Ding J F, Chen X, Yuan H, Liu L, Huang J Q, Zhang Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72(10): 158–165

DOI

125
Yang S J, Yao N, Jiang F N, Xie J, Sun S Y, Chen X, Yuan H, Cheng X B, Huang J Q, Zhang Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e20221454

126
Ma T, Ni Y, Wang Q, Xiao J, Huang Z, Tao Z, Chen J. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Materials, 2022, 52(9): 69–75

DOI

127
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3(8): 674–681

DOI

128
Fan X, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang C, Liou S C, Amine K, Xu K, Wang C. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715–722

DOI

129
Fan X L, Ji X, Chen L, Chen J, Deng T, Han F D, Yue J, Piao N, Wang R X, Zhou X Q, Xiao X, Chen L, Wang C. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4(10): 882–890

DOI

130
Zhang H R, Huang L, Xu H T, Zhang X H, Chen Z, Gao C H, Lu C L, Liu Z, Jiang M F, Cui G L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience, 2022, 2(2): 201–208

131
Shi P, Zheng H, Liang X, Sun Y, Cheng S, Chen C, Xiang H. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54(35): 4453–4456

DOI

132
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule, 2018, 2(8): 1548–1558

DOI

133
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W, He X, Nitta Y, Ouyang M. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11(1): 5100

DOI

134
JiaM MZhangCGuoY WPengL SZhangX YQianW WZhangLZhangS J. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy & Environmental Materials, 2022, in press

135
Liu M C, Zeng Z Q, Zhong W, Ge Z C, Li L Q, Lei S, Wu Q, Zhang H, Cheng S J, Xie J. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619(15): 399–406

DOI

136
Xu Z, Deng K, Zhou S, Liu Z, Guan X, Mo D. Nonflammable localized high-concentration electrolytes with long-term cycling stability for high-performance Li metal batteries. ACS Applied Materials & Interfaces, 2022, 14(43): 48694–48704

DOI

137
Wu Q, Qan Y, Tang X, Teng J H, Ding H Y, Zhao H M, Li J. Stable cycling of lithium-metal batteries in hydrofluoroether-based localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2022, 5(5): 5742–5749

DOI

138
Cho S J, Yu D E, Pollard T P, Moon H, Jang M, Borodin O, Lee S Y. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience, 2020, 23(2): 100844

DOI

139
Wang Z C, Zhang F R, Sun Y Y, Zheng L, Shen Y B, Fu D S, Li W F, Pan A R, Wang L, Xu J J, Hu J, Wu X. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Advanced Energy Materials, 2021, 11(17): 2003752

DOI

140
Sun H, Zhu G, Zhu Y, Lin M C, Chen H, Li Y Y, Hung W H, Zhou B, Wang X, Bai Y, Gu M, Huang C L, Tai H C, Xu X, Angell M, Shyue J J, Dai H. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Advanced Materials, 2020, 32(26): 2001741

DOI

141
Zhang Q K, Zhang X Q, Hou L P, Sun S Y, Zhan Y X, Liang J L, Zhang F S, Feng X N, Li B Q, Huang J Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Advanced Energy Materials, 2022, 12(24): 2200139

DOI

142
Zhang C, Gu S C, Zhang D F, Ma J B, Zheng H, Zheng M Y, Lv R T, Yu K, Wu J Q, Wang X M, Yang Q H, Kang F, Lv W. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52(8): 355–364

DOI

143
Liu Y, Li W, Cheng L, Liu Q, Wei J, Huang Y. Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chemical Record, 2022, 22(10): e202200068

DOI

144
Liu H, Cheng X B, Yan C, Li Z H, Zhao C Z, Xiang R, Yuan H, Huang J Q, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhang Q. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72–81

145
Li Q, Jiao S, Luo L, Ding M S, Zheng J, Cartmell S S, Wang C M, Xu K, Zhang J G, Xu W. Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835

DOI

146
Dong X, Lin Y, Li P, Ma Y, Huang J, Bin D, Wang Y, Qi Y, Xia Y. High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 2019, 58(17): 5623–5627

DOI

147
Lin S S, Hua H M, Lai P B, Zhao J B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Advanced Energy Materials, 2021, 11(36): 2101775

DOI

148
Park K, Jo Y, Koo B, Lee H, Lee H. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. Chemical Engineering Journal, 2022, 427(27): 131889–131900

DOI

149
Kuang S, Hua H, Lai P, Li J, Deng X, Yang Y, Zhao J. Anion-containing solvation structure reconfiguration enables wide-temperature electrolyte for high-energy-density lithium-metal batteries. ACS Applied Materials & Interfaces, 2022, 14(16): 19056–19066

DOI

150
Xu S J, Sun Z H, Sun C G, Li F, Chen K, Zhang Z H, Hou G J, Cheng H M, Li F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Advanced Functional Materials, 2020, 30(51): 2007172

151
Zheng J, Sun C, Wang Z, Liu S, An B, Sun Z, Li F. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(34): 18448–18453

Outlines

/