Frontiers of Chemical Science and Engineering >
Localized high-concentration electrolytes for lithium metal batteries: progress and prospect
Received date: 28 Sep 2022
Accepted date: 26 Nov 2022
Published date: 15 Oct 2023
Copyright
With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.
Jia-Xin Guo , Wen-Bo Tang , Xiaosong Xiong , He Liu , Tao Wang , Yuping Wu , Xin-Bing Cheng . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1354 -1371 . DOI: 10.1007/s11705-022-2286-4
1 |
Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Letters, 2010, 10(4): 1486–1491
|
2 |
Chen L, Fan X, Hu E, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang X, Wang C. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem, 2019, 5(4): 896–912
|
3 |
Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44(17): 5926–5940
|
4 |
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
|
5 |
Shen X, Zhang X Q, Ding F, Huang J Q, Xu R, Chen X, Yan C, Su F Y, Chen C M, Liu X, Zhang Q. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Material Advances, 2021, 2021(1): 1205324
|
6 |
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537
|
7 |
Peng J, Wu D, Song F, Wang S, Niu Q, Xu J, Lu P, Li H, Chen L, Wu F. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Advanced Functional Materials, 2022, 32(2): 2105776
|
8 |
Xu X, Jiao X, Kapitanova O O, Wang J, Volkov V S, Liu Y, Xiong S. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Advanced Energy Materials, 2022, 12(19): 2200244
|
9 |
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X Q, Zhang J G. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3): 180–186
|
10 |
Liu T, Yu L, Lu J, Zhou T, Huang X, Cai Z, Dai A, Gim J, Ren Y, Xiao X, Holt M V, Chu Y S, Arslan I, Wen J, Amine K. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12(1): 6024
|
11 |
Xu X Q, Jiang F N, Yang S J, Xiao Y, Liu H, Liu F Y, Liu L, Cheng X B. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69(10): 205–210
|
12 |
Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790–801
|
13 |
Qiao Y, Li Q, Cheng X B, Liu F, Yang Y, Lu Z, Zhao J, Wu J, Liu H, Yang S, Liu Y. Three-dimensional superlithiophilic interphase for dendrite-free lithium metal anodes. ACS Applied Materials & Interfaces, 2020, 12(5): 5767–5774
|
14 |
Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Advanced Materials, 2019, 31(37): 1902785
|
15 |
Xu X, Liu Y, Hwang J Y, Kapitanova O O, Song Z, Sun Y K, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 2020, 10(44): 2002390
|
16 |
Zhang F, Sun Y, Wang Z, Fu D, Li J, Hu J, Xu J, Wu X. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(21): 23774–23780
|
17 |
Wang Z, Zhang H, Han R, Xu J, Pan A, Zhang F, Huang D, Wei Y, Wang L, Song H, Liu Y, Shen Y, Hu J, Wu X. Establish an advanced electrolyte/graphite interphase by an ionic liquid-based localized highly concentrated electrolyte for low-temperature and rapid-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12023–12029
|
18 |
Heist A, Lee S H. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. Journal of the Electrochemical Society, 2019, 166(10): A1860–A1866
|
19 |
Xu S, Xu R, Yu T, Chen K, Sun C, Hu G, Bai S, Cheng H M, Sun Z, Li F. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy & Environmental Science, 2022, 15(8): 3379–3387
|
20 |
Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3(4): e1601659
|
21 |
Zhou J Q, Qian T, Liu J, Wang M F, Zhang L, Yan C L. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Letters, 2019, 19(5): 3066–3073
|
22 |
Zhou Q, Yang X Y, Xiong X S, Zhang Q Y, Peng B H, Chen Y H, Wang Z G, Fu L J, Wu Y P. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Advanced Energy Materials, 2022, 12(39): 2201991
|
23 |
Chai S, Zhang Y, Wang Y, He Q, Zhou S, Pan A. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience, 2022, 2(5): 494–508
|
24 |
Yan Z, Pan H Y, Wang J Y, Chen R S, Li Q, Luo F, Yu X Q, Li H. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40(6): 1357–1365
|
25 |
Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1(1): 24–37
|
26 |
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7(1): 12032
|
27 |
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9): 739–746
|
28 |
Ren X D, Zou L F, Jiao S H, Mei D H, Engelhard M H, Li Q Y, Lee H Y, Niu C J, Adams B D, Wang C M, Liu J, Zhang J G, Xu W. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters, 2019, 4(4): 896–903
|
29 |
Cheng X B, Liu H, Yuan H, Peng H J, Tang C, Huang J Q, Zhang Q. A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1(1): 38–50
|
30 |
Ren Y, Shin W, Manthiram A. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design. Advanced Energy Materials, 2022, 12(19): 2200190
|
31 |
Xiong X S, Yan W Q, Zhu Y S, Liu L L, Fu L J, Chen Y H, Yu N F, Wu Y P, Wang B, Xiao R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Advanced Energy Materials, 2022, 12(13): 2103112
|
32 |
Xiong X S, Sun R, Yan W Q, Qiao Q, Zhu Y S, Liu L L, Fu L J, Yu N F, Wu Y P, Wang B. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(26): 13814–13820
|
33 |
Xiong X S, Zhi R Y, Zhou Q, Yan W Q, Zhu Y S, Chen Y H, Fu L J, Yu N F, Wu Y P. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2(13): 4240–4245
|
34 |
Meng X, Lau K C, Zhou H, Ghosh S K, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Material Advances, 2021, 2021(1): 9786201
|
35 |
Fan W J, Sun Z W, Yuan Y, Yuan X H, You C, Huang Q H, Ye J, Fu L J, Kondratiev V, Wu Y P. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(14): 7645–7652
|
36 |
Zhao Q, Chen X, Hou W, Ye B R, Zhang Y Q, Xia X H, Wang J S. A facile, scalable, high stability lithium metal anode. SusMat, 2022, 2(1): 104–112
|
37 |
Varenne F, Alper J P, Miserque F, Bongu C S, Boulineau A, Martin J F, Dauvois V, Demarque A, Bouhier M, Boismain F, Franger S, Herlin-Boime N, Le Caër S. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustainable Energy & Fuels, 2018, 2(9): 2100–2108
|
38 |
Lorandi F, Liu T, Fantin M, Manser J, Al-Obeidi A, Zimmerman M, Matyjaszewski K, Whitacre J F. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience, 2021, 24(6): 102578
|
39 |
Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries. Journal of the Electrochemical Society, 2021, 168(1): 010522
|
40 |
Wu C, Zhou Y, Zhu X L, Zhan M Z, Yang H X, Qian J. Research progress on high concentration electrolytes for Li metal batteries. Acta Physico-Chimica Sinica, 2021, 37(2): 2008044 (in Chinese)
|
41 |
Su L, Zhao X, Yi M, Charalambous H, Celio H, Liu Y, Manthiram A. Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Advanced Energy Materials, 2022, 12(36): 2201911
|
42 |
Geng Z, Lu J Z, Li Q, Qiu J L, Wang Y, Peng J Y, Huang J, Li W J, Yu X Q, Li H. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23(8): 646–652
|
43 |
Lu H T, Yang C P, Wang F F, Wang L, Zhou J H, Chen W, Yang Q H. Interfacial high-concentration electrolyte for stable lithium metal anode: theory, design, and demonstration. Nano Research, 2022, 15(10): 1–8
|
44 |
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49(95): 11194–11196
|
45 |
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
|
46 |
Jiang L L, Yan C, Yao Y X, Cai W, Huang J Q, Zhang Q. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 2021, 60(7): 3402–3406
|
47 |
Jiang J C, Fan Q N, Liu H K, Chou S L, Konstantinov K, Wang J Z. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Applied Materials & Interfaces, 2021, 13(24): 28405–28414
|
48 |
Wang Y, Zheng H, Hong L, Jiang F, Liu Y, Feng X, Zhou R, Sun Y, Xiang H. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445(13): 136802
|
49 |
Hong L, Ren H, Wang Y, Liu Y, Xiang H. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at –20 °C. Electrochimica Acta, 2022, 414(14): 140238
|
50 |
Zheng H, Xiang H F, Jiang F Y, Liu Y C, Sun Y, Liang X, Feng Y Z, Yu Y. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440
|
51 |
Zhang J, Li Q, Zeng Y, Tang Z, Sun D, Huang D, Peng Z, Tang Y, Wang H. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51(8): 660–670
|
52 |
Sayah S, Ghosh A, Baazizi M, Amine R, Dahbi M, Amine Y, Ghamouss F, Amine K. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98(11): 107336
|
53 |
Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362–6371
|
54 |
Takeyoshi J, Kobori N, Kanamura K. Electrochemical evaluation of lithium-metal anode in highly concentrated ethylene carbonate based electrolytes. Electrochemistry, 2020, 88(6): 540–547
|
55 |
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
|
56 |
Maeyoshi Y, Ding D, Kubota M, Ueda H, Abe K, Kanamura K, Abe H. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator. ACS Applied Materials & Interfaces, 2019, 11(29): 25833–25843
|
57 |
Zhou A X, Zhang J K, Chen M, Yue J M, Lv T S, Liu B H, Zhu X Z, Qin K, Feng G, Suo L M. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes. Advanced Materials, 2022, 34(38): 2207040
|
58 |
Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Advanced Materials, 2018, 30(21): 1706102
|
59 |
Lu Y M, Sun Q T, Liu Y, Yu P P, Zhang Y Y, Lu J C, Huang H C, Yang H, Cheng T. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Physical Chemistry Chemical Physics, 2022, 24(31): 18684–18690
|
60 |
Angarita-Gomez S, Balbuena P B. Ion mobility and solvation complexes at liquid-solid interfaces in dilute, high concentration, and localized high concentration electrolytes. Materials Advances, 2022, 3(15): 6352–6363
|
61 |
Ren X, Gao P, Zou L, Jiao S, Cao X, Zhang X, Jia H, Engelhard M H, Matthews B E, Wu H, Lee H, Niu C, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28603–28613
|
62 |
Wu Y Z, Wang A P, Hu Q, Liang H M, Xu H, Wang L, He X M. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Central Science, 2022, 8(9): 1290–1298
|
63 |
Yang S J, Xu X Q, Cheng X B, Wang X M, Chen J X, Xiao Y, Yuan H, Liu H, Chen A B, Zhu W C, Huang J, Zhang Q. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058 (in Chinese)
|
64 |
Tang X, Zhang W C, Cao L Y. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41(3): 726–729
|
65 |
Langdon J, Manthiram A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Advanced Materials, 2022, 34(41): 2205188
|
66 |
Holoubek J, Yan Q, Liu H, Hopkins E J, Wu Z, Yu S, Luo J, Pascal T A, Chen Z, Liu P. Oxidative stabilization of dilute ether electrolytes via anion modification. ACS Energy Letters, 2022, 7(2): 675–682
|
67 |
Han W W, Ardhi R E A, Liu G C. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41(2): 353–355
|
68 |
Chen X, Qin L, Sun J, Zhang S, Xiao D, Wu Y. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angewandte Chemie International Edition, 2022, 61(33): 202207018
|
69 |
Liu H, Sun X, Cheng X B, Guo C, Yu F, Bao W Z, Wang T, Li J F, Zhang Q. Working principles of lithium metal anode in pouch cells. Advanced Energy Materials, 2022, 12(39): 2202518
|
70 |
Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries?. Advanced Energy Materials, 2021, 11(10): 2003416
|
71 |
Moon J, Kim D O, Bekaert L, Song M, Chung J, Lee D, Hubin A, Lim J. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13(1): 4538–4549
|
72 |
Wang S, Qu J, Wu F, Yan K, Zhang C. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Applied Materials & Interfaces, 2020, 12(7): 8366–8375
|
73 |
Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(49): 22194–22201
|
74 |
Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 2022, 61(20): e202201406
|
75 |
Cao X, Gao P, Ren X, Zou L, Engelhard M H, Matthews B E, Hu J, Niu C, Liu D, Arey B W, Wang C, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020357118
|
76 |
Ren F, Li Z, Chen J, Huguet P, Peng Z, Deabate S. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Applied Materials & Interfaces, 2022, 14(3): 4211–4219
|
77 |
Yang S J, Yao N, Xu X Q, Jiang F N, Chen X, Liu H, Yuan H, Huang J Q, Cheng X B. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(35): 19664–19668
|
78 |
Jiang F N, Yang S J, Liu H, Cheng X B, Liu L, Xiang R, Zhang Q, Kaskel S, Huang J Q. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1(4): 506–536
|
79 |
Liu Y, Xu X, Kapitanova O O, Evdokimov P V, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Advanced Energy Materials, 2022, 12(9): 2103589
|
80 |
Wen Z X, Fang W Q, Wu X Y, Qin Z Y, Kang H, Chen L, Zhang N, Liu X H, Chen G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Advanced Functional Materials, 2022, 32(35): 2204768
|
81 |
Wang H, Wu L, Xue B, Wang F, Luo Z, Zhang X, Calvez L, Fan P, Fan B. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Applied Materials & Interfaces, 2022, 14(13): 15214–15224
|
82 |
Xu X Q, Xu R, Cheng X B, Xiao Y, Peng H J, Yuan H, Liu F Y. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 56(17): 391–394
|
83 |
Yu L, Chen S R, Lee H, Zhang L C, Engelhard M H, Li Q Y, Jiao S H, Liu J, Xu W, Zhang J G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Letters, 2018, 3(9): 2059–2067
|
84 |
Zheng Y, Soto F A, Ponce V, Seminario J M, Cao X, Zhang J G, Balbuena P B. Localized high concentration electrolyte behavior near a lithium-metal anode surface. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(43): 25047–25055
|
85 |
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q, Wang D, Xu W, Zhang J G. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Advanced Functional Materials, 2020, 30(24): 2001285
|
86 |
Yoo D J, Yang S, Kim K J, Choi J W. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(35): 14869–14876
|
87 |
Li T, Li Y, Sun Y L, Qian Z F, Wang R H. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Letters, 2021, 3(6): 838–844
|
88 |
Xiong X S, Zhou Q, Zhu Y S, Chen Y H, Fu L J, Liu L L, Yu N F, Wu Y P, van Ree T. In pursuit of a dendrite-free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy & Fuels, 2020, 34(9): 10503–10512
|
89 |
Perez Beltran S, Cao X, Zhang J G, El-Khoury P Z, Balbuena P B. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(32): 17459–17473
|
90 |
Wu Q, Tang X, Qian Y, Duan J D, Wang R, Teng J H, Li J. Enhancing the cycling stability for lithium-metal batteries by localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2021, 4(9): 10234–10243
|
91 |
Zhu S, Chen J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44(8): 48–56
|
92 |
Pham T D, Bin Faheem A, Lee K K. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small, 2021, 17(46): 2103375
|
93 |
Maeyoshi Y, Yoshii K, Shikano M, Sakaebe H. Improving cycling stability of vanadium sulfide (VS4) as a Li battery cathode material using a localized high-concentration carbonate-based electrolyte. ACS Applied Energy Materials, 2021, 4(12): 13627–13635
|
94 |
Maeyoshi Y, Yoshii K, Sakaebe H. Stable lithium metal plating/stripping in a localized high-concentration cyclic carbonate-based electrolyte. Electrochemistry, 2022, 90(4): 047001–047001
|
95 |
Shi P, Hou L P, Jin C B, Xiao Y, Yao Y X, Xie J, Li B Q, Zhang X Q, Zhang Q. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. Journal of the American Chemical Society, 2022, 144(1): 212–218
|
96 |
Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q. Dead lithium formation in lithium metal batteries: a phase field model. Journal of Energy Chemistry, 2022, 71(8): 29–35
|
97 |
Liu Y, Sun Q T, Yu P P, Ma B Y, Yang H, Zhang J Y, Xie M, Cheng T. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(2): 632–639
|
98 |
Liu M C, Li X, Zhai B Y, Zeng Z Q, Hu W, Lei S, Zhang H, Cheng S J, Xie J. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries. Batteries & Supercaps, 2022, 5(5): e202100407
|
99 |
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z, Gao Y, Zheng Z, Deng Y, Wang C. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95(5): 107014–107025
|
100 |
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(16): 9001–9009
|
101 |
Zhu C N, Sun C C, Li R H, Weng S T, Fan L W, Wang X F, Chen L X, Noked M, Fan X L. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Letters, 2022, 7(4): 1338–1347
|
102 |
Huangzhang E C, Zeng X Y, Yang T X, Liu H Y, Sun C H, Fan Y C, Hu H L, Zhao X Y, Zuo X X, Nan J M. A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439(24): 135534
|
103 |
Chen A L, Shang N, Ouyang Y, Mo L, Zhou C Y, Tjiu W W, Lai F, Miao Y E, Liu T. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2(2): 192–200
|
104 |
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries. ACS Applied Materials & Interfaces, 2021, 13(48): 57430–57441
|
105 |
Bai F W, Li Y, Chen Z Y, Zhou Y C, Li C Z, Li T. Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548(32): 232045
|
106 |
Fang M M, Chen J E, Chen B Y, Wang J H. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19903–19913
|
107 |
Xia M, Lin M, Liu G, Cheng Y, Jiao T, Fu A, Yang Y, Wang M, Zheng J. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442(16): 136351
|
108 |
Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094–7102
|
109 |
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999
|
110 |
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877–1892
|
111 |
Liu H, Li T, Xu X Q, Shi P, Zhang X Q, Xu R, Cheng X B, Huang J Q. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37(9): 152–158
|
112 |
Afrifah V A, Kim J M, Lee Y M, Phiri I, Lee Y G, Ryou S Y. Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548(32): 232017
|
113 |
Zhou T, Zhao Y, El Kazzi M, Choi J W, Coskun A. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 2022, 61(19): e202115884
|
114 |
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Enabling high-voltage lithium-metal batteries under practical conditions. Joule, 2019, 3(7): 1662–1676
|
115 |
Lin S, Hua H, Li Z, Zhao J. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Applied Materials & Interfaces, 2020, 12(30): 33710–33718
|
116 |
Wang W, Zhang J, Yang Q, Wang S, Wang W, Li B. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Applied Materials & Interfaces, 2020, 12(20): 22901–22909
|
117 |
Xiang H F, Shi P C, Bhattacharya P, Chen X L, Mei D H, Bowden M E, Zheng J M, Zhang J G, Xu W. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318(18): 170–177
|
118 |
Peng X D, Lin Y K, Wang Y, Li Y J, Zhao T S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy, 2022, 96(11): 107102
|
119 |
MoonHChoS JYuD ELeeS Y. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy & Environmental Materials, 2022
|
120 |
Pham T D, Bin Faheem A, Kim J, Oh H M, Lee K K. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small, 2022, 18(14): 2107492
|
121 |
Pham T D, Lee K K. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small, 2021, 17(20): 2100133
|
122 |
Xue H, He W, Li J, Zhang D, Wang X, Zhou S, Yang W. Stable dendrite-free high-voltage lithium metal batteries enabled by localized high concentration fluoroethylene carbonate based electrolytes. ACS Applied Energy Materials, 2022, 5(10): 12553–12560
|
123 |
Xu X Q, Cheng X B, Jiang F N, Yang S J, Ren D S, Shi P, Hsu H J, Yuan H, Huang J Q, Ouyang M G, Zhang Q. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2(4): 435–444
|
124 |
Jiang F N, Yang S J, Cheng X B, Shi P, Ding J F, Chen X, Yuan H, Liu L, Huang J Q, Zhang Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72(10): 158–165
|
125 |
Yang S J, Yao N, Jiang F N, Xie J, Sun S Y, Chen X, Yuan H, Cheng X B, Huang J Q, Zhang Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e20221454
|
126 |
Ma T, Ni Y, Wang Q, Xiao J, Huang Z, Tao Z, Chen J. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Materials, 2022, 52(9): 69–75
|
127 |
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3(8): 674–681
|
128 |
Fan X, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang C, Liou S C, Amine K, Xu K, Wang C. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715–722
|
129 |
Fan X L, Ji X, Chen L, Chen J, Deng T, Han F D, Yue J, Piao N, Wang R X, Zhou X Q, Xiao X, Chen L, Wang C. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4(10): 882–890
|
130 |
Zhang H R, Huang L, Xu H T, Zhang X H, Chen Z, Gao C H, Lu C L, Liu Z, Jiang M F, Cui G L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience, 2022, 2(2): 201–208
|
131 |
Shi P, Zheng H, Liang X, Sun Y, Cheng S, Chen C, Xiang H. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54(35): 4453–4456
|
132 |
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule, 2018, 2(8): 1548–1558
|
133 |
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W, He X, Nitta Y, Ouyang M. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11(1): 5100
|
134 |
JiaM MZhangCGuoY WPengL SZhangX YQianW WZhangLZhangS J. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy & Environmental Materials, 2022, in press
|
135 |
Liu M C, Zeng Z Q, Zhong W, Ge Z C, Li L Q, Lei S, Wu Q, Zhang H, Cheng S J, Xie J. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619(15): 399–406
|
136 |
Xu Z, Deng K, Zhou S, Liu Z, Guan X, Mo D. Nonflammable localized high-concentration electrolytes with long-term cycling stability for high-performance Li metal batteries. ACS Applied Materials & Interfaces, 2022, 14(43): 48694–48704
|
137 |
Wu Q, Qan Y, Tang X, Teng J H, Ding H Y, Zhao H M, Li J. Stable cycling of lithium-metal batteries in hydrofluoroether-based localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2022, 5(5): 5742–5749
|
138 |
Cho S J, Yu D E, Pollard T P, Moon H, Jang M, Borodin O, Lee S Y. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience, 2020, 23(2): 100844
|
139 |
Wang Z C, Zhang F R, Sun Y Y, Zheng L, Shen Y B, Fu D S, Li W F, Pan A R, Wang L, Xu J J, Hu J, Wu X. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Advanced Energy Materials, 2021, 11(17): 2003752
|
140 |
Sun H, Zhu G, Zhu Y, Lin M C, Chen H, Li Y Y, Hung W H, Zhou B, Wang X, Bai Y, Gu M, Huang C L, Tai H C, Xu X, Angell M, Shyue J J, Dai H. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Advanced Materials, 2020, 32(26): 2001741
|
141 |
Zhang Q K, Zhang X Q, Hou L P, Sun S Y, Zhan Y X, Liang J L, Zhang F S, Feng X N, Li B Q, Huang J Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Advanced Energy Materials, 2022, 12(24): 2200139
|
142 |
Zhang C, Gu S C, Zhang D F, Ma J B, Zheng H, Zheng M Y, Lv R T, Yu K, Wu J Q, Wang X M, Yang Q H, Kang F, Lv W. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52(8): 355–364
|
143 |
Liu Y, Li W, Cheng L, Liu Q, Wei J, Huang Y. Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chemical Record, 2022, 22(10): e202200068
|
144 |
Liu H, Cheng X B, Yan C, Li Z H, Zhao C Z, Xiang R, Yuan H, Huang J Q, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhang Q. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72–81
|
145 |
Li Q, Jiao S, Luo L, Ding M S, Zheng J, Cartmell S S, Wang C M, Xu K, Zhang J G, Xu W. Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835
|
146 |
Dong X, Lin Y, Li P, Ma Y, Huang J, Bin D, Wang Y, Qi Y, Xia Y. High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 2019, 58(17): 5623–5627
|
147 |
Lin S S, Hua H M, Lai P B, Zhao J B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Advanced Energy Materials, 2021, 11(36): 2101775
|
148 |
Park K, Jo Y, Koo B, Lee H, Lee H. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. Chemical Engineering Journal, 2022, 427(27): 131889–131900
|
149 |
Kuang S, Hua H, Lai P, Li J, Deng X, Yang Y, Zhao J. Anion-containing solvation structure reconfiguration enables wide-temperature electrolyte for high-energy-density lithium-metal batteries. ACS Applied Materials & Interfaces, 2022, 14(16): 19056–19066
|
150 |
Xu S J, Sun Z H, Sun C G, Li F, Chen K, Zhang Z H, Hou G J, Cheng H M, Li F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Advanced Functional Materials, 2020, 30(51): 2007172
|
151 |
Zheng J, Sun C, Wang Z, Liu S, An B, Sun Z, Li F. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(34): 18448–18453
|
/
〈 | 〉 |