Localized high-concentration electrolytes for lithium metal batteries: progress and prospect
Jia-Xin Guo, Wen-Bo Tang, Xiaosong Xiong, He Liu, Tao Wang, Yuping Wu, Xin-Bing Cheng
Localized high-concentration electrolytes for lithium metal batteries: progress and prospect
With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.
high-concentration electrolyte / localized high-concentration electrolyte / lithium metal battery / solid electrolyte interphase / dendrite
[1] |
Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Letters, 2010, 10(4): 1486–1491
CrossRef
Google scholar
|
[2] |
Chen L, Fan X, Hu E, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang X, Wang C. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem, 2019, 5(4): 896–912
CrossRef
Google scholar
|
[3] |
Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44(17): 5926–5940
CrossRef
Google scholar
|
[4] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
CrossRef
Google scholar
|
[5] |
Shen X, Zhang X Q, Ding F, Huang J Q, Xu R, Chen X, Yan C, Su F Y, Chen C M, Liu X, Zhang Q. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Material Advances, 2021, 2021(1): 1205324
CrossRef
Google scholar
|
[6] |
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537
CrossRef
Google scholar
|
[7] |
Peng J, Wu D, Song F, Wang S, Niu Q, Xu J, Lu P, Li H, Chen L, Wu F. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Advanced Functional Materials, 2022, 32(2): 2105776
CrossRef
Google scholar
|
[8] |
Xu X, Jiao X, Kapitanova O O, Wang J, Volkov V S, Liu Y, Xiong S. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Advanced Energy Materials, 2022, 12(19): 2200244
CrossRef
Google scholar
|
[9] |
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X Q, Zhang J G. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3): 180–186
CrossRef
Google scholar
|
[10] |
Liu T, Yu L, Lu J, Zhou T, Huang X, Cai Z, Dai A, Gim J, Ren Y, Xiao X, Holt M V, Chu Y S, Arslan I, Wen J, Amine K. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12(1): 6024
CrossRef
Google scholar
|
[11] |
Xu X Q, Jiang F N, Yang S J, Xiao Y, Liu H, Liu F Y, Liu L, Cheng X B. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries. Journal of Energy Chemistry, 2022, 69(10): 205–210
CrossRef
Google scholar
|
[12] |
Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2016, 2(11): 790–801
CrossRef
Google scholar
|
[13] |
Qiao Y, Li Q, Cheng X B, Liu F, Yang Y, Lu Z, Zhao J, Wu J, Liu H, Yang S, Liu Y. Three-dimensional superlithiophilic interphase for dendrite-free lithium metal anodes. ACS Applied Materials & Interfaces, 2020, 12(5): 5767–5774
CrossRef
Google scholar
|
[14] |
Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Advanced Materials, 2019, 31(37): 1902785
CrossRef
Google scholar
|
[15] |
Xu X, Liu Y, Hwang J Y, Kapitanova O O, Song Z, Sun Y K, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Advanced Energy Materials, 2020, 10(44): 2002390
CrossRef
Google scholar
|
[16] |
Zhang F, Sun Y, Wang Z, Fu D, Li J, Hu J, Xu J, Wu X. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12(21): 23774–23780
CrossRef
Google scholar
|
[17] |
Wang Z, Zhang H, Han R, Xu J, Pan A, Zhang F, Huang D, Wei Y, Wang L, Song H, Liu Y, Shen Y, Hu J, Wu X. Establish an advanced electrolyte/graphite interphase by an ionic liquid-based localized highly concentrated electrolyte for low-temperature and rapid-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12023–12029
CrossRef
Google scholar
|
[18] |
Heist A, Lee S H. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. Journal of the Electrochemical Society, 2019, 166(10): A1860–A1866
CrossRef
Google scholar
|
[19] |
Xu S, Xu R, Yu T, Chen K, Sun C, Hu G, Bai S, Cheng H M, Sun Z, Li F. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy & Environmental Science, 2022, 15(8): 3379–3387
CrossRef
Google scholar
|
[20] |
Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3(4): e1601659
CrossRef
Google scholar
|
[21] |
Zhou J Q, Qian T, Liu J, Wang M F, Zhang L, Yan C L. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Letters, 2019, 19(5): 3066–3073
CrossRef
Google scholar
|
[22] |
Zhou Q, Yang X Y, Xiong X S, Zhang Q Y, Peng B H, Chen Y H, Wang Z G, Fu L J, Wu Y P. A solid electrolyte based on electrochemical active Li4Ti5O12 with PVDF for solid state lithium metal battery. Advanced Energy Materials, 2022, 12(39): 2201991
CrossRef
Google scholar
|
[23] |
Chai S, Zhang Y, Wang Y, He Q, Zhou S, Pan A. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience, 2022, 2(5): 494–508
|
[24] |
Yan Z, Pan H Y, Wang J Y, Chen R S, Li Q, Luo F, Yu X Q, Li H. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40(6): 1357–1365
CrossRef
Google scholar
|
[25] |
Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1(1): 24–37
CrossRef
Google scholar
|
[26] |
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7(1): 12032
CrossRef
Google scholar
|
[27] |
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9): 739–746
CrossRef
Google scholar
|
[28] |
Ren X D, Zou L F, Jiao S H, Mei D H, Engelhard M H, Li Q Y, Lee H Y, Niu C J, Adams B D, Wang C M, Liu J, Zhang J G, Xu W. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters, 2019, 4(4): 896–903
CrossRef
Google scholar
|
[29] |
Cheng X B, Liu H, Yuan H, Peng H J, Tang C, Huang J Q, Zhang Q. A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1(1): 38–50
CrossRef
Google scholar
|
[30] |
Ren Y, Shin W, Manthiram A. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design. Advanced Energy Materials, 2022, 12(19): 2200190
CrossRef
Google scholar
|
[31] |
Xiong X S, Yan W Q, Zhu Y S, Liu L L, Fu L J, Chen Y H, Yu N F, Wu Y P, Wang B, Xiao R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Advanced Energy Materials, 2022, 12(13): 2103112
CrossRef
Google scholar
|
[32] |
Xiong X S, Sun R, Yan W Q, Qiao Q, Zhu Y S, Liu L L, Fu L J, Yu N F, Wu Y P, Wang B. A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(26): 13814–13820
CrossRef
Google scholar
|
[33] |
Xiong X S, Zhi R Y, Zhou Q, Yan W Q, Zhu Y S, Chen Y H, Fu L J, Yu N F, Wu Y P. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2(13): 4240–4245
CrossRef
Google scholar
|
[34] |
Meng X, Lau K C, Zhou H, Ghosh S K, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Material Advances, 2021, 2021(1): 9786201
CrossRef
Google scholar
|
[35] |
Fan W J, Sun Z W, Yuan Y, Yuan X H, You C, Huang Q H, Ye J, Fu L J, Kondratiev V, Wu Y P. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(14): 7645–7652
CrossRef
Google scholar
|
[36] |
Zhao Q, Chen X, Hou W, Ye B R, Zhang Y Q, Xia X H, Wang J S. A facile, scalable, high stability lithium metal anode. SusMat, 2022, 2(1): 104–112
CrossRef
Google scholar
|
[37] |
Varenne F, Alper J P, Miserque F, Bongu C S, Boulineau A, Martin J F, Dauvois V, Demarque A, Bouhier M, Boismain F, Franger S, Herlin-Boime N, Le Caër S. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode-electrolyte system for improved coulombic efficiency. Sustainable Energy & Fuels, 2018, 2(9): 2100–2108
CrossRef
Google scholar
|
[38] |
Lorandi F, Liu T, Fantin M, Manser J, Al-Obeidi A, Zimmerman M, Matyjaszewski K, Whitacre J F. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. iScience, 2021, 24(6): 102578
CrossRef
Google scholar
|
[39] |
Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries. Journal of the Electrochemical Society, 2021, 168(1): 010522
CrossRef
Google scholar
|
[40] |
Wu C, Zhou Y, Zhu X L, Zhan M Z, Yang H X, Qian J. Research progress on high concentration electrolytes for Li metal batteries. Acta Physico-Chimica Sinica, 2021, 37(2): 2008044 (in Chinese)
|
[41] |
Su L, Zhao X, Yi M, Charalambous H, Celio H, Liu Y, Manthiram A. Uncovering the solvation structure of LiPF6-based localized saturated electrolytes and their effect on LiNiO2-based lithium-metal batteries. Advanced Energy Materials, 2022, 12(36): 2201911
CrossRef
Google scholar
|
[42] |
Geng Z, Lu J Z, Li Q, Qiu J L, Wang Y, Peng J Y, Huang J, Li W J, Yu X Q, Li H. Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23(8): 646–652
CrossRef
Google scholar
|
[43] |
Lu H T, Yang C P, Wang F F, Wang L, Zhou J H, Chen W, Yang Q H. Interfacial high-concentration electrolyte for stable lithium metal anode: theory, design, and demonstration. Nano Research, 2022, 15(10): 1–8
CrossRef
Google scholar
|
[44] |
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications, 2013, 49(95): 11194–11196
CrossRef
Google scholar
|
[45] |
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
CrossRef
Google scholar
|
[46] |
Jiang L L, Yan C, Yao Y X, Cai W, Huang J Q, Zhang Q. Inhibiting solvent Co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angewandte Chemie International Edition, 2021, 60(7): 3402–3406
CrossRef
Google scholar
|
[47] |
Jiang J C, Fan Q N, Liu H K, Chou S L, Konstantinov K, Wang J Z. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Applied Materials & Interfaces, 2021, 13(24): 28405–28414
CrossRef
Google scholar
|
[48] |
Wang Y, Zheng H, Hong L, Jiang F, Liu Y, Feng X, Zhou R, Sun Y, Xiang H. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: experiments and theoretical calculations. Chemical Engineering Journal, 2022, 445(13): 136802
CrossRef
Google scholar
|
[49] |
Hong L, Ren H, Wang Y, Liu Y, Xiang H. Designing on solvent composition of dual-salt low concentration electrolyte for inhibiting lithium dendrite growth at –20 °C. Electrochimica Acta, 2022, 414(14): 140238
CrossRef
Google scholar
|
[50] |
Zheng H, Xiang H F, Jiang F Y, Liu Y C, Sun Y, Liang X, Feng Y Z, Yu Y. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440
CrossRef
Google scholar
|
[51] |
Zhang J, Li Q, Zeng Y, Tang Z, Sun D, Huang D, Peng Z, Tang Y, Wang H. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51(8): 660–670
CrossRef
Google scholar
|
[52] |
Sayah S, Ghosh A, Baazizi M, Amine R, Dahbi M, Amine Y, Ghamouss F, Amine K. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98(11): 107336
CrossRef
Google scholar
|
[53] |
Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362–6371
CrossRef
Google scholar
|
[54] |
Takeyoshi J, Kobori N, Kanamura K. Electrochemical evaluation of lithium-metal anode in highly concentrated ethylene carbonate based electrolytes. Electrochemistry, 2020, 88(6): 540–547
CrossRef
Google scholar
|
[55] |
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
CrossRef
Google scholar
|
[56] |
Maeyoshi Y, Ding D, Kubota M, Ueda H, Abe K, Kanamura K, Abe H. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator. ACS Applied Materials & Interfaces, 2019, 11(29): 25833–25843
CrossRef
Google scholar
|
[57] |
Zhou A X, Zhang J K, Chen M, Yue J M, Lv T S, Liu B H, Zhu X Z, Qin K, Feng G, Suo L M. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-in-salt electrolytes. Advanced Materials, 2022, 34(38): 2207040
CrossRef
Google scholar
|
[58] |
Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Advanced Materials, 2018, 30(21): 1706102
CrossRef
Google scholar
|
[59] |
Lu Y M, Sun Q T, Liu Y, Yu P P, Zhang Y Y, Lu J C, Huang H C, Yang H, Cheng T. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Physical Chemistry Chemical Physics, 2022, 24(31): 18684–18690
CrossRef
Google scholar
|
[60] |
Angarita-Gomez S, Balbuena P B. Ion mobility and solvation complexes at liquid-solid interfaces in dilute, high concentration, and localized high concentration electrolytes. Materials Advances, 2022, 3(15): 6352–6363
CrossRef
Google scholar
|
[61] |
Ren X, Gao P, Zou L, Jiao S, Cao X, Zhang X, Jia H, Engelhard M H, Matthews B E, Wu H, Lee H, Niu C, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28603–28613
CrossRef
Google scholar
|
[62] |
Wu Y Z, Wang A P, Hu Q, Liang H M, Xu H, Wang L, He X M. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Central Science, 2022, 8(9): 1290–1298
CrossRef
Google scholar
|
[63] |
Yang S J, Xu X Q, Cheng X B, Wang X M, Chen J X, Xiao Y, Yuan H, Liu H, Chen A B, Zhu W C, Huang J, Zhang Q. Columnar lithium metal deposits: the role of non-aqueous electrolyte additive. Acta Physico-Chimica Sinica, 2021, 37(1): 2007058 (in Chinese)
|
[64] |
Tang X, Zhang W C, Cao L Y. Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Metals, 2022, 41(3): 726–729
CrossRef
Google scholar
|
[65] |
Langdon J, Manthiram A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Advanced Materials, 2022, 34(41): 2205188
CrossRef
Google scholar
|
[66] |
Holoubek J, Yan Q, Liu H, Hopkins E J, Wu Z, Yu S, Luo J, Pascal T A, Chen Z, Liu P. Oxidative stabilization of dilute ether electrolytes via anion modification. ACS Energy Letters, 2022, 7(2): 675–682
CrossRef
Google scholar
|
[67] |
Han W W, Ardhi R E A, Liu G C. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41(2): 353–355
CrossRef
Google scholar
|
[68] |
Chen X, Qin L, Sun J, Zhang S, Xiao D, Wu Y. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angewandte Chemie International Edition, 2022, 61(33): 202207018
CrossRef
Google scholar
|
[69] |
Liu H, Sun X, Cheng X B, Guo C, Yu F, Bao W Z, Wang T, Li J F, Zhang Q. Working principles of lithium metal anode in pouch cells. Advanced Energy Materials, 2022, 12(39): 2202518
CrossRef
Google scholar
|
[70] |
Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries?. Advanced Energy Materials, 2021, 11(10): 2003416
CrossRef
Google scholar
|
[71] |
Moon J, Kim D O, Bekaert L, Song M, Chung J, Lee D, Hubin A, Lim J. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nature Communications, 2022, 13(1): 4538–4549
CrossRef
Google scholar
|
[72] |
Wang S, Qu J, Wu F, Yan K, Zhang C. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Applied Materials & Interfaces, 2020, 12(7): 8366–8375
CrossRef
Google scholar
|
[73] |
Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(49): 22194–22201
CrossRef
Google scholar
|
[74] |
Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition, 2022, 61(20): e202201406
CrossRef
Google scholar
|
[75] |
Cao X, Gao P, Ren X, Zou L, Engelhard M H, Matthews B E, Hu J, Niu C, Liu D, Arey B W, Wang C, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020357118
CrossRef
Google scholar
|
[76] |
Ren F, Li Z, Chen J, Huguet P, Peng Z, Deabate S. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Applied Materials & Interfaces, 2022, 14(3): 4211–4219
CrossRef
Google scholar
|
[77] |
Yang S J, Yao N, Xu X Q, Jiang F N, Chen X, Liu H, Yuan H, Huang J Q, Cheng X B. Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(35): 19664–19668
CrossRef
Google scholar
|
[78] |
Jiang F N, Yang S J, Liu H, Cheng X B, Liu L, Xiang R, Zhang Q, Kaskel S, Huang J Q. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1(4): 506–536
CrossRef
Google scholar
|
[79] |
Liu Y, Xu X, Kapitanova O O, Evdokimov P V, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Advanced Energy Materials, 2022, 12(9): 2103589
CrossRef
Google scholar
|
[80] |
Wen Z X, Fang W Q, Wu X Y, Qin Z Y, Kang H, Chen L, Zhang N, Liu X H, Chen G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Advanced Functional Materials, 2022, 32(35): 2204768
CrossRef
Google scholar
|
[81] |
Wang H, Wu L, Xue B, Wang F, Luo Z, Zhang X, Calvez L, Fan P, Fan B. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Applied Materials & Interfaces, 2022, 14(13): 15214–15224
CrossRef
Google scholar
|
[82] |
Xu X Q, Xu R, Cheng X B, Xiao Y, Peng H J, Yuan H, Liu F Y. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 56(17): 391–394
|
[83] |
Yu L, Chen S R, Lee H, Zhang L C, Engelhard M H, Li Q Y, Jiao S H, Liu J, Xu W, Zhang J G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Letters, 2018, 3(9): 2059–2067
CrossRef
Google scholar
|
[84] |
Zheng Y, Soto F A, Ponce V, Seminario J M, Cao X, Zhang J G, Balbuena P B. Localized high concentration electrolyte behavior near a lithium-metal anode surface. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(43): 25047–25055
CrossRef
Google scholar
|
[85] |
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q, Wang D, Xu W, Zhang J G. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Advanced Functional Materials, 2020, 30(24): 2001285
CrossRef
Google scholar
|
[86] |
Yoo D J, Yang S, Kim K J, Choi J W. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(35): 14869–14876
CrossRef
Google scholar
|
[87] |
Li T, Li Y, Sun Y L, Qian Z F, Wang R H. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Materials Letters, 2021, 3(6): 838–844
CrossRef
Google scholar
|
[88] |
Xiong X S, Zhou Q, Zhu Y S, Chen Y H, Fu L J, Liu L L, Yu N F, Wu Y P, van Ree T. In pursuit of a dendrite-free electrolyte/electrode interface on lithium metal anodes: a minireview. Energy & Fuels, 2020, 34(9): 10503–10512
CrossRef
Google scholar
|
[89] |
Perez Beltran S, Cao X, Zhang J G, El-Khoury P Z, Balbuena P B. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(32): 17459–17473
CrossRef
Google scholar
|
[90] |
Wu Q, Tang X, Qian Y, Duan J D, Wang R, Teng J H, Li J. Enhancing the cycling stability for lithium-metal batteries by localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2021, 4(9): 10234–10243
CrossRef
Google scholar
|
[91] |
Zhu S, Chen J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Materials, 2022, 44(8): 48–56
CrossRef
Google scholar
|
[92] |
Pham T D, Bin Faheem A, Lee K K. Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries. Small, 2021, 17(46): 2103375
CrossRef
Google scholar
|
[93] |
Maeyoshi Y, Yoshii K, Shikano M, Sakaebe H. Improving cycling stability of vanadium sulfide (VS4) as a Li battery cathode material using a localized high-concentration carbonate-based electrolyte. ACS Applied Energy Materials, 2021, 4(12): 13627–13635
CrossRef
Google scholar
|
[94] |
Maeyoshi Y, Yoshii K, Sakaebe H. Stable lithium metal plating/stripping in a localized high-concentration cyclic carbonate-based electrolyte. Electrochemistry, 2022, 90(4): 047001–047001
CrossRef
Google scholar
|
[95] |
Shi P, Hou L P, Jin C B, Xiao Y, Yao Y X, Xie J, Li B Q, Zhang X Q, Zhang Q. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. Journal of the American Chemical Society, 2022, 144(1): 212–218
CrossRef
Google scholar
|
[96] |
Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q. Dead lithium formation in lithium metal batteries: a phase field model. Journal of Energy Chemistry, 2022, 71(8): 29–35
CrossRef
Google scholar
|
[97] |
Liu Y, Sun Q T, Yu P P, Ma B Y, Yang H, Zhang J Y, Xie M, Cheng T. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(2): 632–639
CrossRef
Google scholar
|
[98] |
Liu M C, Li X, Zhai B Y, Zeng Z Q, Hu W, Lei S, Zhang H, Cheng S J, Xie J. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries. Batteries & Supercaps, 2022, 5(5): e202100407
CrossRef
Google scholar
|
[99] |
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z, Gao Y, Zheng Z, Deng Y, Wang C. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95(5): 107014–107025
CrossRef
Google scholar
|
[100] |
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(16): 9001–9009
CrossRef
Google scholar
|
[101] |
Zhu C N, Sun C C, Li R H, Weng S T, Fan L W, Wang X F, Chen L X, Noked M, Fan X L. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Letters, 2022, 7(4): 1338–1347
CrossRef
Google scholar
|
[102] |
Huangzhang E C, Zeng X Y, Yang T X, Liu H Y, Sun C H, Fan Y C, Hu H L, Zhao X Y, Zuo X X, Nan J M. A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li||LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439(24): 135534
CrossRef
Google scholar
|
[103] |
Chen A L, Shang N, Ouyang Y, Mo L, Zhou C Y, Tjiu W W, Lai F, Miao Y E, Liu T. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2(2): 192–200
|
[104] |
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. Multifunctional electrolyte additive stabilizes electrode-electrolyte interface layers for high-voltage lithium metal batteries. ACS Applied Materials & Interfaces, 2021, 13(48): 57430–57441
CrossRef
Google scholar
|
[105] |
Bai F W, Li Y, Chen Z Y, Zhou Y C, Li C Z, Li T. Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548(32): 232045
CrossRef
Google scholar
|
[106] |
Fang M M, Chen J E, Chen B Y, Wang J H. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(37): 19903–19913
CrossRef
Google scholar
|
[107] |
Xia M, Lin M, Liu G, Cheng Y, Jiao T, Fu A, Yang Y, Wang M, Zheng J. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chemical Engineering Journal, 2022, 442(16): 136351
CrossRef
Google scholar
|
[108] |
Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094–7102
CrossRef
Google scholar
|
[109] |
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999
CrossRef
Google scholar
|
[110] |
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877–1892
CrossRef
Google scholar
|
[111] |
Liu H, Li T, Xu X Q, Shi P, Zhang X Q, Xu R, Cheng X B, Huang J Q. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries. Chinese Journal of Chemical Engineering, 2021, 37(9): 152–158
CrossRef
Google scholar
|
[112] |
Afrifah V A, Kim J M, Lee Y M, Phiri I, Lee Y G, Ryou S Y. Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548(32): 232017
CrossRef
Google scholar
|
[113] |
Zhou T, Zhao Y, El Kazzi M, Choi J W, Coskun A. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angewandte Chemie International Edition, 2022, 61(19): e202115884
CrossRef
Google scholar
|
[114] |
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Enabling high-voltage lithium-metal batteries under practical conditions. Joule, 2019, 3(7): 1662–1676
CrossRef
Google scholar
|
[115] |
Lin S, Hua H, Li Z, Zhao J. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Applied Materials & Interfaces, 2020, 12(30): 33710–33718
CrossRef
Google scholar
|
[116] |
Wang W, Zhang J, Yang Q, Wang S, Wang W, Li B. Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte. ACS Applied Materials & Interfaces, 2020, 12(20): 22901–22909
CrossRef
Google scholar
|
[117] |
Xiang H F, Shi P C, Bhattacharya P, Chen X L, Mei D H, Bowden M E, Zheng J M, Zhang J G, Xu W. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 2016, 318(18): 170–177
CrossRef
Google scholar
|
[118] |
Peng X D, Lin Y K, Wang Y, Li Y J, Zhao T S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy, 2022, 96(11): 107102
CrossRef
Google scholar
|
[119] |
MoonHChoS JYuD ELeeS Y. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame. Energy & Environmental Materials, 2022
|
[120] |
Pham T D, Bin Faheem A, Kim J, Oh H M, Lee K K. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small, 2022, 18(14): 2107492
CrossRef
Google scholar
|
[121] |
Pham T D, Lee K K. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small, 2021, 17(20): 2100133
CrossRef
Google scholar
|
[122] |
Xue H, He W, Li J, Zhang D, Wang X, Zhou S, Yang W. Stable dendrite-free high-voltage lithium metal batteries enabled by localized high concentration fluoroethylene carbonate based electrolytes. ACS Applied Energy Materials, 2022, 5(10): 12553–12560
CrossRef
Google scholar
|
[123] |
Xu X Q, Cheng X B, Jiang F N, Yang S J, Ren D S, Shi P, Hsu H J, Yuan H, Huang J Q, Ouyang M G, Zhang Q. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2(4): 435–444
CrossRef
Google scholar
|
[124] |
Jiang F N, Yang S J, Cheng X B, Shi P, Ding J F, Chen X, Yuan H, Liu L, Huang J Q, Zhang Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72(10): 158–165
CrossRef
Google scholar
|
[125] |
Yang S J, Yao N, Jiang F N, Xie J, Sun S Y, Chen X, Yuan H, Cheng X B, Huang J Q, Zhang Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e20221454
|
[126] |
Ma T, Ni Y, Wang Q, Xiao J, Huang Z, Tao Z, Chen J. Lithium dendrites inhibition by regulating electrodeposition kinetics. Energy Storage Materials, 2022, 52(9): 69–75
CrossRef
Google scholar
|
[127] |
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3(8): 674–681
CrossRef
Google scholar
|
[128] |
Fan X, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang C, Liou S C, Amine K, Xu K, Wang C. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13(8): 715–722
CrossRef
Google scholar
|
[129] |
Fan X L, Ji X, Chen L, Chen J, Deng T, Han F D, Yue J, Piao N, Wang R X, Zhou X Q, Xiao X, Chen L, Wang C. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4(10): 882–890
CrossRef
Google scholar
|
[130] |
Zhang H R, Huang L, Xu H T, Zhang X H, Chen Z, Gao C H, Lu C L, Liu Z, Jiang M F, Cui G L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience, 2022, 2(2): 201–208
|
[131] |
Shi P, Zheng H, Liang X, Sun Y, Cheng S, Chen C, Xiang H. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54(35): 4453–4456
CrossRef
Google scholar
|
[132] |
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule, 2018, 2(8): 1548–1558
CrossRef
Google scholar
|
[133] |
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W, He X, Nitta Y, Ouyang M. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11(1): 5100
CrossRef
Google scholar
|
[134] |
JiaM MZhangCGuoY WPengL SZhangX YQianW WZhangLZhangS J. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy & Environmental Materials, 2022, in press
|
[135] |
Liu M C, Zeng Z Q, Zhong W, Ge Z C, Li L Q, Lei S, Wu Q, Zhang H, Cheng S J, Xie J. Non-flammable fluorobenzene-diluted highly concentrated electrolytes enable high-performance Li-metal and Li-ion batteries. Journal of Colloid and Interface Science, 2022, 619(15): 399–406
CrossRef
Google scholar
|
[136] |
Xu Z, Deng K, Zhou S, Liu Z, Guan X, Mo D. Nonflammable localized high-concentration electrolytes with long-term cycling stability for high-performance Li metal batteries. ACS Applied Materials & Interfaces, 2022, 14(43): 48694–48704
CrossRef
Google scholar
|
[137] |
Wu Q, Qan Y, Tang X, Teng J H, Ding H Y, Zhao H M, Li J. Stable cycling of lithium-metal batteries in hydrofluoroether-based localized high-concentration electrolytes with 2-fluoropyridine additive. ACS Applied Energy Materials, 2022, 5(5): 5742–5749
CrossRef
Google scholar
|
[138] |
Cho S J, Yu D E, Pollard T P, Moon H, Jang M, Borodin O, Lee S Y. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience, 2020, 23(2): 100844
CrossRef
Google scholar
|
[139] |
Wang Z C, Zhang F R, Sun Y Y, Zheng L, Shen Y B, Fu D S, Li W F, Pan A R, Wang L, Xu J J, Hu J, Wu X. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Advanced Energy Materials, 2021, 11(17): 2003752
CrossRef
Google scholar
|
[140] |
Sun H, Zhu G, Zhu Y, Lin M C, Chen H, Li Y Y, Hung W H, Zhou B, Wang X, Bai Y, Gu M, Huang C L, Tai H C, Xu X, Angell M, Shyue J J, Dai H. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Advanced Materials, 2020, 32(26): 2001741
CrossRef
Google scholar
|
[141] |
Zhang Q K, Zhang X Q, Hou L P, Sun S Y, Zhan Y X, Liang J L, Zhang F S, Feng X N, Li B Q, Huang J Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Advanced Energy Materials, 2022, 12(24): 2200139
CrossRef
Google scholar
|
[142] |
Zhang C, Gu S C, Zhang D F, Ma J B, Zheng H, Zheng M Y, Lv R T, Yu K, Wu J Q, Wang X M, Yang Q H, Kang F, Lv W. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52(8): 355–364
CrossRef
Google scholar
|
[143] |
Liu Y, Li W, Cheng L, Liu Q, Wei J, Huang Y. Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chemical Record, 2022, 22(10): e202200068
CrossRef
Google scholar
|
[144] |
Liu H, Cheng X B, Yan C, Li Z H, Zhao C Z, Xiang R, Yuan H, Huang J Q, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhang Q. A perspective on energy chemistry of low-temperature lithium metal batteries. iEnergy, 2022, 1(1): 72–81
|
[145] |
Li Q, Jiao S, Luo L, Ding M S, Zheng J, Cartmell S S, Wang C M, Xu K, Zhang J G, Xu W. Wide-temperature electrolytes for lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835
CrossRef
Google scholar
|
[146] |
Dong X, Lin Y, Li P, Ma Y, Huang J, Bin D, Wang Y, Qi Y, Xia Y. High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angewandte Chemie International Edition, 2019, 58(17): 5623–5627
CrossRef
Google scholar
|
[147] |
Lin S S, Hua H M, Lai P B, Zhao J B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Advanced Energy Materials, 2021, 11(36): 2101775
CrossRef
Google scholar
|
[148] |
Park K, Jo Y, Koo B, Lee H, Lee H. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte. Chemical Engineering Journal, 2022, 427(27): 131889–131900
CrossRef
Google scholar
|
[149] |
Kuang S, Hua H, Lai P, Li J, Deng X, Yang Y, Zhao J. Anion-containing solvation structure reconfiguration enables wide-temperature electrolyte for high-energy-density lithium-metal batteries. ACS Applied Materials & Interfaces, 2022, 14(16): 19056–19066
CrossRef
Google scholar
|
[150] |
Xu S J, Sun Z H, Sun C G, Li F, Chen K, Zhang Z H, Hou G J, Cheng H M, Li F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Advanced Functional Materials, 2020, 30(51): 2007172
|
[151] |
Zheng J, Sun C, Wang Z, Liu S, An B, Sun Z, Li F. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(34): 18448–18453
|
/
〈 | 〉 |