1 Introduction
2 Hydrocracking process overview and data collection
2.1 Data generation and preprocessing
Tab.1 Inputs and outputs of the model |
Category | Definition | Number |
---|---|---|
Inputs-feed 1 (VGO) | True boiling points | 9 |
Density | 1 | |
Sulfur content | 1 | |
Nitrogen content | 1 | |
Inputs-feed 2 (hydrotreated FCC diesel) | True boiling points | 9 |
Density | 1 | |
Sulfur content | 1 | |
Nitrogen content | 1 | |
Inputs-operating conditions | Feed ratio | 1 |
Hydrogen to oil ratio | 2 | |
Reactor pressure | 1 | |
Inlet temperatures | 8 | |
Outputs | Yields | 8 |
Properties | 72 |
3 MISR model
3.1 Multi-input-SOM-CNN
Tab.2 Statistics related to performances of different SOM sizes under 2000 iterations (prediction of 13 outputs) |
Index | 24 × 24 | 32 × 32 | 48 × 48 | 96 × 96 | 128 × 128 |
---|---|---|---|---|---|
Executing time/min | 7.58 | 8.09 | 8.51 | 17.33 | 32.99 |
R2 (correlation coefficient) | 0.950 | 0.956 | 0.953 | 0.9611 | 0.9606 |
Mean relative error (MRE) | 2.3587 | 1.9645 | 2.2186 | 1.8196 | 1.6652 |
Mean absolute error (MAE) | 0.4263 | 0.3610 | 0.3768 | 0.3171 | 0.2960 |
3.2 Residual blocks
3.3 MISR framework
4 Training and comparison of SOM-CNN, MISR, and FNN models
4.1 Influence of BN
Tab.3 Comparison of SOM-CNN with and without BN |
Index | SOM-CNN without BN | SOM-CNN with BN |
---|---|---|
Iterations | 2000 | 2000 |
Correlation coefficient | 0.9329 | 0.9468 |
MRE (10 samples) | 2.543 | 2.316 |
MAE (10 samples) | 0.4970 | 0.4464 |
Time cost/min | 5.50 | 7.66 |
4.2 Influence of multi-input channels
Tab.4 Comparison of SOM-CNN with and without multi-input |
Index | SOM-CNN | Multi-input-SOM-CNN |
---|---|---|
Correlation coefficient | 0.9468 | 0.9533 |
MRE (test samples) | 2.316 | 2.117 |
MAE (test samples) | 0.4464 | 0.3870 |
Time cost/min | 7.66 | 8.01 |
4.3 Comparison of MISR, FNN, and SOM-CNN frameworks
Tab.5 Performances of MISR with multiple residual blocks |
Index | 2 residual blocks | 3 residual blocks | 4 residual blocks | 5 residual blocks |
---|---|---|---|---|
Loss | 0.00104 | 0.00102 | 0.00102 | 0.00100 |
Iterations | 2000 | 2000 | 2000 | 2000 |
Total time/min | 19.7 | 25.9 | 33.1 | 70.8 |
Correlation coefficient R2 (total outputs) | 0.9628 | 0.9635 | 0.9638 | 0.9655 |
R2 (properties only) | 0.9369 | 0.9354 | 0.9368 | 0.9402 |
MRE (test samples) | 1.862 | 1.6928 | 1.6710 | 1.6700 |
MAE (test samples) | 0.3371 | 0.3177 | 0.3195 | 0.3071 |
Number of trainable parameters | 378,413 | 1,580,000 | 6,379,000 | 25,563,000 |
Tab.6 Performances of classical FNN models with different hidden layers |
Index | 1 hidden layer | 2 hidden layers | 3 hidden layers | 4 hidden layers | 5 hidden layers |
---|---|---|---|---|---|
Structure | 36-64-13 | 36-128-64-13 | 36-128-128-64-13 | 36-128-256-128-64-13 | 36-128-256-256-128-64-13 |
Loss | 0.00211 | 0.00174 | 0.00161 | 0.00125 | 0.00120 |
Iterations | 5000 | 5000 | 5000 | 5000 | 5000 |
Total time/min | 3.8 | 5.2 | 6.2 | 9.4 | 10.3 |
Correlation coefficient R2 (total outputs) | 0.928 | 0.939 | 0.943 | 0.954 | 0.956 |
R2 (properties only) | 0.868 | 0.890 | 0.895 | 0.915 | 0.917 |
MRE (test samples) | 2.623 | 2.328 | 2.249 | 1.999 | 1.914 |
MAE (test samples) | 0.518 | 0.470 | 0.455 | 0.4187 | 0.4035 |
Number of trainable parameters | 3213 | 13837 | 30349 | 96269 | 145549 |
Tab.7 Performances of different networks |
Index | FNN | SOM-CNN | Multi-input-SOM-CNN | MISR with 3 residual blocks |
---|---|---|---|---|
Loss | 0.00161 | 0.00157 | 0.00127 | 0.00099 |
Iterations | 5000 | 2000 | 2000 | 2000 |
Total time/min | 6.2 | 7.6 | 8.1 | 25.2 |
Correlation coefficient R2 (total outputs) | 0.9434 | 0.9418 | 0.9536 | 0.9638 |
R2 (properties only) | 0.895 | 0.892 | 0.917 | 0.937 |
MRE | 2.249 | 2.332 | 1.987 | 1.686 |
MAE | 0.455 | 0.456 | 0.386 | 0.314 |
5 Optimization of hydrocracker operation
Tab.8 Optimization effects of three methods |
Index | 1 round-PSO | 1 round-DE | Multi-round-PSO |
---|---|---|---|
Rounds | 1 | 1 | 40 |
Iterations per round | 400 | 1000 | 400 |
Total time/min | 2.06 | 154.16 | 82.54 |
Seconds per iteration | 0.31 | 9.25 | 0.31 |
Max profit (10 times) | 2420.39 | 2413.02 | 2429.67 |
Mean profit (10 times) | 2321.91 | 2395.19 | 2423.19 |
Tab.9 Profit prediction and real optimization results via SOM-CNN and MISR |
Case number | SOM-CNN prediction benefit | SOM-CNN real benefit | SOM-CNN prediction error | MISR prediction benefit | MISR real benefit | MISR prediction error |
---|---|---|---|---|---|---|
Case 1 | 2068.98 | 2268.22 | 199.24 | 2232.38 | 2278.4 | 46.02 |
Case 2 | 2066.36 | 2279.12 | 212.76 | 2224.89 | 2236.27 | 11.38 |
Case 3 | 2036.59 | 2089.14 | 52.55 | 2238.26 | 2142.88 | ‒95.38 |
Case 4 | 2076.25 | 2277.07 | 200.82 | 2207.9 | 2298.58 | 90.68 |
Case 5 | 2040.76 | 2172.62 | 131.86 | 2192.5 | 2158.91 | ‒33.59 |
Case 6 | 2065.55 | 2186.73 | 121.18 | 2243.26 | 2291.41 | 48.15 |
Case 7 | 2034.07 | 2177.14 | 143.07 | 2165.76 | 2187.69 | 21.93 |
Case 8 | 2041.77 | 2247.44 | 205.67 | 2200.91 | 2244.65 | 43.74 |
Case 9 | 2048.19 | 2229.03 | 180.84 | 2155.81 | 2246.63 | 90.82 |
Case 10 | 2051.72 | 2187.32 | 135.6 | 2203.24 | 2204.42 | 1.18 |
Mean | 2053.024 | 2211.383 | 158.36 | 2206.491 | 2228.984 | 48.28 |