Frontiers of Chemical Science and Engineering >
Optimizing iodine capture performance by metal–organic framework containing with bipyridine units
Received date: 24 Apr 2022
Accepted date: 01 Jul 2022
Copyright
Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th6(μ3-O)4(μ3-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.
Xinyi Yang , Xiaolu Liu , Yanfang Liu , Xiao-Feng Wang , Zhongshan Chen , Xiangke Wang . Optimizing iodine capture performance by metal–organic framework containing with bipyridine units[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(4) : 395 -403 . DOI: 10.1007/s11705-022-2218-3
1 |
Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166
|
2 |
Mayer K, Wallenius M, Lutzenkirchen K, Horta J, Nicholl A, Rasmussen G, van Belle P, Varga Z, Buda R, Erdmann N, Kratz J V, Trautmann N, Fifield L K, Tims S G, Fröhlich M B, Steier P. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456
|
3 |
Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse G I N, Kruger P E, Telfer S G, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
|
4 |
Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001
|
5 |
Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. 99TcO4− removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12
|
6 |
Li J, Chen L, Shen N, Xie R, Sheridan M, Chen X, Sheng D, Zhang D, Chai Z, Wang S. Rational design of a cationic polymer network towards record high uptake of 99TcO4− in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260
|
7 |
Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4– cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450
|
8 |
Zhang J, Chen L, Dai X, Chen L, Zhai F, Yu W, Guo S, Yang L, Chen L, Zhang Y, He L, Chen C, Chai Z, Wang S. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
|
9 |
Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang S. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4–. Science Bulletin, 2022, 67(9): 924–932
|
10 |
He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714
|
11 |
Soelberg N R, Garn T G, Greenhalgh M R, Law J D, Jubin R, Strachan D M, Thallapally P K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12
|
12 |
Pryma D A, Mandel S J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491
|
13 |
Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555
|
14 |
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076
|
15 |
Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595
|
16 |
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
|
17 |
Murray L J, Dincă M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
|
18 |
Xue D X, Wang Q, Bai J. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16
|
19 |
Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728
|
20 |
He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108
|
21 |
Drake T, Ji P, Lin W. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138
|
22 |
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333
|
23 |
Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615
|
24 |
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
|
25 |
Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662
|
26 |
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076
|
27 |
Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang X K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735
|
28 |
Li Z J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z H, Lin J, Wang J Q, Wang S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718
|
29 |
Li Z J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z H, Guo X, Lin J, Wang J Q. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442
|
30 |
Sava D F, Chapman K W, Rodriguez M A, Greathouse J A, Crozier P S, Zhao H, Chupas P J, Nenoff T M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596
|
31 |
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9
|
32 |
Zhang X, da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitorica-Yrezabal I, Frogley M D, Cinque G, Tang C C, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta A J, Denecke M A, Yang S, Schröder M. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296
|
33 |
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596
|
34 |
Banerjee D, Chen X, Lobanov S S, Plonka A M, Chan X, Daly J A, Kim T, Thallapally P K, Parise J B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626
|
35 |
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul J F, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437
|
36 |
Hu Y Q, Li M Q, Wang Y, Zhang T, Liao P Q, Zheng Z, Chen X M, Zheng Y Z. Direct observation of confined I−···I2···I− interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413
|
37 |
Wang L, Li T, Dong X, Pang M, Xiao S, Zhang W. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578
|
38 |
Ju Y, Li Z J, Lu H, Zhou Z, Li Y, Wu X L, Guo X, Qian Y, Zhang Z H, Lin J, Wang J Q, He M Y. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626
|
39 |
Munn A S, Millange F, Frigoli M, Guillou N, Falaise C, Stevenson V, Volkringer C, Loiseau T, Cibin G, Walton R I. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114
|
40 |
Mehlana G, Ramon G, Bourne S A. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30
|
41 |
Jia M W, Li J T, Che S T, Kan L, Li G H, Liu Y L. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266
|
42 |
Xu T, Li J T, Jia M W, Li G H, Liu Y L. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102
|
43 |
Luo D, He Y, Tian J, Sessler J L, Chi X D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117
|
44 |
HaoMLiuXLiuXZhangJYangHWaterhouseG I NWangXMaS. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307
|
45 |
Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322
|
/
〈 | 〉 |