RESEARCH ARTICLE

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

  • Xinyi Yang 1,2 ,
  • Xiaolu Liu 2 ,
  • Yanfang Liu 2 ,
  • Xiao-Feng Wang , 1 ,
  • Zhongshan Chen 2 ,
  • Xiangke Wang , 2
Expand
  • 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
  • 2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
xfwang518@sina.cn
xkwang@ncepu.edu.cn

Received date: 24 Apr 2022

Accepted date: 01 Jul 2022

Copyright

2022 Higher Education Press

Abstract

Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

Cite this article

Xinyi Yang , Xiaolu Liu , Yanfang Liu , Xiao-Feng Wang , Zhongshan Chen , Xiangke Wang . Optimizing iodine capture performance by metal–organic framework containing with bipyridine units[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(4) : 395 -403 . DOI: 10.1007/s11705-022-2218-3

Acknowledgements

We gratefully acknowledge funding support from the Science Challenge Project (Grant No. TZ2016004) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ30565).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2218-3 and is accessible for authorized users.
1
Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166

DOI

2
Mayer K, Wallenius M, Lutzenkirchen K, Horta J, Nicholl A, Rasmussen G, van Belle P, Varga Z, Buda R, Erdmann N, Kratz J V, Trautmann N, Fifield L K, Tims S G, Fröhlich M B, Steier P. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456

DOI

3
Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse G I N, Kruger P E, Telfer S G, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621

DOI

4
Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001

DOI

5
Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. 99TcO4 removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12

DOI

6
Li J, Chen L, Shen N, Xie R, Sheridan M, Chen X, Sheng D, Zhang D, Chai Z, Wang S. Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260

DOI

7
Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450

DOI

8
Zhang J, Chen L, Dai X, Chen L, Zhai F, Yu W, Guo S, Yang L, Chen L, Zhang Y, He L, Chen C, Chai Z, Wang S. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455

DOI

9
Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang S. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4. Science Bulletin, 2022, 67(9): 924–932

DOI

10
He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714

DOI

11
Soelberg N R, Garn T G, Greenhalgh M R, Law J D, Jubin R, Strachan D M, Thallapally P K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12

DOI

12
Pryma D A, Mandel S J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491

DOI

13
Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555

DOI

14
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076

15
Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595

DOI

16
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504

DOI

17
Murray L J, Dincă M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314

DOI

18
Xue D X, Wang Q, Bai J. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16

DOI

19
Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728

DOI

20
He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108

DOI

21
Drake T, Ji P, Lin W. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138

DOI

22
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333

DOI

23
Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615

DOI

24
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162

DOI

25
Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662

DOI

26
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076

DOI

27
Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang X K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735

DOI

28
Li Z J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z H, Lin J, Wang J Q, Wang S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718

DOI

29
Li Z J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z H, Guo X, Lin J, Wang J Q. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442

DOI

30
Sava D F, Chapman K W, Rodriguez M A, Greathouse J A, Crozier P S, Zhao H, Chupas P J, Nenoff T M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596

DOI

31
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9

DOI

32
Zhang X, da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitorica-Yrezabal I, Frogley M D, Cinque G, Tang C C, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta A J, Denecke M A, Yang S, Schröder M. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296

DOI

33
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596

DOI

34
Banerjee D, Chen X, Lobanov S S, Plonka A M, Chan X, Daly J A, Kim T, Thallapally P K, Parise J B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626

DOI

35
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul J F, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437

DOI

36
Hu Y Q, Li M Q, Wang Y, Zhang T, Liao P Q, Zheng Z, Chen X M, Zheng Y Z. Direct observation of confined I···I2···I interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413

DOI

37
Wang L, Li T, Dong X, Pang M, Xiao S, Zhang W. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578

DOI

38
Ju Y, Li Z J, Lu H, Zhou Z, Li Y, Wu X L, Guo X, Qian Y, Zhang Z H, Lin J, Wang J Q, He M Y. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626

DOI

39
Munn A S, Millange F, Frigoli M, Guillou N, Falaise C, Stevenson V, Volkringer C, Loiseau T, Cibin G, Walton R I. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114

DOI

40
Mehlana G, Ramon G, Bourne S A. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30

DOI

41
Jia M W, Li J T, Che S T, Kan L, Li G H, Liu Y L. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266

DOI

42
Xu T, Li J T, Jia M W, Li G H, Liu Y L. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102

DOI

43
Luo D, He Y, Tian J, Sessler J L, Chi X D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117

DOI

44
HaoMLiuXLiuXZhangJYangHWaterhouseG I NWangXMaS. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307

45
Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322

DOI

Outlines

/