Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

Xinyi Yang, Xiaolu Liu, Yanfang Liu, Xiao-Feng Wang, Zhongshan Chen, Xiangke Wang

PDF(11214 KB)
PDF(11214 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (4) : 395-403. DOI: 10.1007/s11705-022-2218-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

Author information +
History +

Abstract

Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

Graphical abstract

Keywords

metal–organic framework / iodine / adsorption / nuclear waste / environmental remediation

Cite this article

Download citation ▾
Xinyi Yang, Xiaolu Liu, Yanfang Liu, Xiao-Feng Wang, Zhongshan Chen, Xiangke Wang. Optimizing iodine capture performance by metal–organic framework containing with bipyridine units. Front. Chem. Sci. Eng., 2023, 17(4): 395‒403 https://doi.org/10.1007/s11705-022-2218-3

References

[1]
Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166
CrossRef Google scholar
[2]
Mayer K, Wallenius M, Lutzenkirchen K, Horta J, Nicholl A, Rasmussen G, van Belle P, Varga Z, Buda R, Erdmann N, Kratz J V, Trautmann N, Fifield L K, Tims S G, Fröhlich M B, Steier P. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456
CrossRef Google scholar
[3]
Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse G I N, Kruger P E, Telfer S G, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
CrossRef Google scholar
[4]
Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001
CrossRef Google scholar
[5]
Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. 99TcO4 removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12
CrossRef Google scholar
[6]
Li J, Chen L, Shen N, Xie R, Sheridan M, Chen X, Sheng D, Zhang D, Chai Z, Wang S. Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260
CrossRef Google scholar
[7]
Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450
CrossRef Google scholar
[8]
Zhang J, Chen L, Dai X, Chen L, Zhai F, Yu W, Guo S, Yang L, Chen L, Zhang Y, He L, Chen C, Chai Z, Wang S. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
CrossRef Google scholar
[9]
Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang S. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4. Science Bulletin, 2022, 67(9): 924–932
CrossRef Google scholar
[10]
He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714
CrossRef Google scholar
[11]
Soelberg N R, Garn T G, Greenhalgh M R, Law J D, Jubin R, Strachan D M, Thallapally P K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12
CrossRef Google scholar
[12]
Pryma D A, Mandel S J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491
CrossRef Google scholar
[13]
Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555
CrossRef Google scholar
[14]
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076
[15]
Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595
CrossRef Google scholar
[16]
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
CrossRef Google scholar
[17]
Murray L J, Dincă M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
CrossRef Google scholar
[18]
Xue D X, Wang Q, Bai J. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16
CrossRef Google scholar
[19]
Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728
CrossRef Google scholar
[20]
He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108
CrossRef Google scholar
[21]
Drake T, Ji P, Lin W. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138
CrossRef Google scholar
[22]
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333
CrossRef Google scholar
[23]
Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615
CrossRef Google scholar
[24]
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
CrossRef Google scholar
[25]
Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662
CrossRef Google scholar
[26]
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076
CrossRef Google scholar
[27]
Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang X K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735
CrossRef Google scholar
[28]
Li Z J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z H, Lin J, Wang J Q, Wang S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718
CrossRef Google scholar
[29]
Li Z J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z H, Guo X, Lin J, Wang J Q. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442
CrossRef Google scholar
[30]
Sava D F, Chapman K W, Rodriguez M A, Greathouse J A, Crozier P S, Zhao H, Chupas P J, Nenoff T M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596
CrossRef Google scholar
[31]
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9
CrossRef Google scholar
[32]
Zhang X, da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitorica-Yrezabal I, Frogley M D, Cinque G, Tang C C, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta A J, Denecke M A, Yang S, Schröder M. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296
CrossRef Google scholar
[33]
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596
CrossRef Google scholar
[34]
Banerjee D, Chen X, Lobanov S S, Plonka A M, Chan X, Daly J A, Kim T, Thallapally P K, Parise J B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626
CrossRef Google scholar
[35]
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul J F, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437
CrossRef Google scholar
[36]
Hu Y Q, Li M Q, Wang Y, Zhang T, Liao P Q, Zheng Z, Chen X M, Zheng Y Z. Direct observation of confined I···I2···I interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413
CrossRef Google scholar
[37]
Wang L, Li T, Dong X, Pang M, Xiao S, Zhang W. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578
CrossRef Google scholar
[38]
Ju Y, Li Z J, Lu H, Zhou Z, Li Y, Wu X L, Guo X, Qian Y, Zhang Z H, Lin J, Wang J Q, He M Y. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626
CrossRef Google scholar
[39]
Munn A S, Millange F, Frigoli M, Guillou N, Falaise C, Stevenson V, Volkringer C, Loiseau T, Cibin G, Walton R I. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114
CrossRef Google scholar
[40]
Mehlana G, Ramon G, Bourne S A. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30
CrossRef Google scholar
[41]
Jia M W, Li J T, Che S T, Kan L, Li G H, Liu Y L. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266
CrossRef Google scholar
[42]
Xu T, Li J T, Jia M W, Li G H, Liu Y L. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102
CrossRef Google scholar
[43]
Luo D, He Y, Tian J, Sessler J L, Chi X D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117
CrossRef Google scholar
[44]
HaoMLiuXLiuXZhangJYangHWaterhouseG I NWangXMaS. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307
[45]
Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322
CrossRef Google scholar

Acknowledgements

We gratefully acknowledge funding support from the Science Challenge Project (Grant No. TZ2016004) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ30565).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2218-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(11214 KB)

Accesses

Citations

Detail

Sections
Recommended

/