Optimizing iodine capture performance by metal–organic framework containing with bipyridine units
Xinyi Yang, Xiaolu Liu, Yanfang Liu, Xiao-Feng Wang, Zhongshan Chen, Xiangke Wang
Optimizing iodine capture performance by metal–organic framework containing with bipyridine units
Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th6(μ3-O)4(μ3-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.
metal–organic framework / iodine / adsorption / nuclear waste / environmental remediation
[1] |
Adamantiades A, Kessides I. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166
CrossRef
Google scholar
|
[2] |
Mayer K, Wallenius M, Lutzenkirchen K, Horta J, Nicholl A, Rasmussen G, van Belle P, Varga Z, Buda R, Erdmann N, Kratz J V, Trautmann N, Fifield L K, Tims S G, Fröhlich M B, Steier P. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456
CrossRef
Google scholar
|
[3] |
Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse G I N, Kruger P E, Telfer S G, Ma S. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
CrossRef
Google scholar
|
[4] |
Cheng G, Zhang A, Zhao Z, Chai Z, Hu B, Han B, Ai Y, Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001
CrossRef
Google scholar
|
[5] |
Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. 99TcO4− removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12
CrossRef
Google scholar
|
[6] |
Li J, Chen L, Shen N, Xie R, Sheridan M, Chen X, Sheng D, Zhang D, Chai Z, Wang S. Rational design of a cationic polymer network towards record high uptake of 99TcO4− in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260
CrossRef
Google scholar
|
[7] |
Li J, Li B, Shen N, Chen L, Guo Q, Chen L, He L, Dai X, Chai Z, Wang S. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4– cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450
CrossRef
Google scholar
|
[8] |
Zhang J, Chen L, Dai X, Chen L, Zhai F, Yu W, Guo S, Yang L, Chen L, Zhang Y, He L, Chen C, Chai Z, Wang S. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
CrossRef
Google scholar
|
[9] |
Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang S. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4–. Science Bulletin, 2022, 67(9): 924–932
CrossRef
Google scholar
|
[10] |
He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C, Pan T, Ma F, Chen J, Yuan M, Zhang Y, Chen L, Zhou R, Han Y, Chai Z, Wang S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714
CrossRef
Google scholar
|
[11] |
Soelberg N R, Garn T G, Greenhalgh M R, Law J D, Jubin R, Strachan D M, Thallapally P K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12
CrossRef
Google scholar
|
[12] |
Pryma D A, Mandel S J. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491
CrossRef
Google scholar
|
[13] |
Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555
CrossRef
Google scholar
|
[14] |
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076
|
[15] |
Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595
CrossRef
Google scholar
|
[16] |
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
CrossRef
Google scholar
|
[17] |
Murray L J, Dincă M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
CrossRef
Google scholar
|
[18] |
Xue D X, Wang Q, Bai J. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16
CrossRef
Google scholar
|
[19] |
Dolgopolova E A, Rice A M, Martin C R, Shustova N B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728
CrossRef
Google scholar
|
[20] |
He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108
CrossRef
Google scholar
|
[21] |
Drake T, Ji P, Lin W. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138
CrossRef
Google scholar
|
[22] |
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333
CrossRef
Google scholar
|
[23] |
Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615
CrossRef
Google scholar
|
[24] |
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
CrossRef
Google scholar
|
[25] |
Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662
CrossRef
Google scholar
|
[26] |
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076
CrossRef
Google scholar
|
[27] |
Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse G I N, Ma S, Wang X K. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735
CrossRef
Google scholar
|
[28] |
Li Z J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z H, Lin J, Wang J Q, Wang S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718
CrossRef
Google scholar
|
[29] |
Li Z J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z H, Guo X, Lin J, Wang J Q. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442
CrossRef
Google scholar
|
[30] |
Sava D F, Chapman K W, Rodriguez M A, Greathouse J A, Crozier P S, Zhao H, Chupas P J, Nenoff T M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596
CrossRef
Google scholar
|
[31] |
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z, Thonhauser T, Chabal Y J, Han Y, Li J. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9
CrossRef
Google scholar
|
[32] |
Zhang X, da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitorica-Yrezabal I, Frogley M D, Cinque G, Tang C C, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta A J, Denecke M A, Yang S, Schröder M. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296
CrossRef
Google scholar
|
[33] |
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596
CrossRef
Google scholar
|
[34] |
Banerjee D, Chen X, Lobanov S S, Plonka A M, Chan X, Daly J A, Kim T, Thallapally P K, Parise J B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626
CrossRef
Google scholar
|
[35] |
Leloire M, Walshe C, Devaux P, Giovine R, Duval S, Bousquet T, Chibani S, Paul J F, Moissette A, Vezin H, Nerisson P, Cantrel L, Volkringer C, Loiseau T. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437
CrossRef
Google scholar
|
[36] |
Hu Y Q, Li M Q, Wang Y, Zhang T, Liao P Q, Zheng Z, Chen X M, Zheng Y Z. Direct observation of confined I−···I2···I− interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413
CrossRef
Google scholar
|
[37] |
Wang L, Li T, Dong X, Pang M, Xiao S, Zhang W. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578
CrossRef
Google scholar
|
[38] |
Ju Y, Li Z J, Lu H, Zhou Z, Li Y, Wu X L, Guo X, Qian Y, Zhang Z H, Lin J, Wang J Q, He M Y. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626
CrossRef
Google scholar
|
[39] |
Munn A S, Millange F, Frigoli M, Guillou N, Falaise C, Stevenson V, Volkringer C, Loiseau T, Cibin G, Walton R I. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114
CrossRef
Google scholar
|
[40] |
Mehlana G, Ramon G, Bourne S A. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30
CrossRef
Google scholar
|
[41] |
Jia M W, Li J T, Che S T, Kan L, Li G H, Liu Y L. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266
CrossRef
Google scholar
|
[42] |
Xu T, Li J T, Jia M W, Li G H, Liu Y L. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102
CrossRef
Google scholar
|
[43] |
Luo D, He Y, Tian J, Sessler J L, Chi X D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117
CrossRef
Google scholar
|
[44] |
HaoMLiuXLiuXZhangJYangHWaterhouseG I NWangXMaS. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307
|
[45] |
Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322
CrossRef
Google scholar
|
/
〈 | 〉 |