Frontiers of Chemical Science and Engineering >
Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage
Received date: 08 Mar 2022
Accepted date: 01 Jun 2022
Published date: 15 Feb 2023
Copyright
Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.
Haoxiang Yu , Leiyu Fan , Chenchen Deng , Huihui Yan , Lei Yan , Jie Shu , Zhen-Bo Wang . Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(2) : 226 -235 . DOI: 10.1007/s11705-022-2198-3
1 |
Liu Y W, Xu J X, Li J, Yang Z W, Huang C C, Yu H X, Zhang L Y, Shu J. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460: 214477
|
2 |
Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452: 214297
|
3 |
Zhao H, Qi Y, Liang K, Li J, Zhou L, Chen J, Huang X, Ren Y. Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Applied Materials & Interfaces, 2021, 13(51): 61555–61564
|
4 |
Yang Z, He J, Lai W H, Peng J, Liu X H, He X X, Guo X F, Li L, Qiao Y, Ma J M, Wu M, Chou S L. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angewandte Chemie International Edition, 2021, 60(52): 27086–27094
|
5 |
Ma L, Cui H, Chen S, Li X, Dong B, Zhi C. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy, 2021, 81: 105632
|
6 |
Xue Q, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Applied Materials & Interfaces, 2019, 11(25): 22339–22345
|
7 |
Xu C W, Yang Z W, Yan H H, Li J, Yu H X, Zhang L Y, Shu J. Synergistic dual conversion reactions assisting Pb−S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12): e2118675119
|
8 |
Yan H H, Yang Z W, Xu C W, Li J, Liu Y W, Zheng R T, Yu H X, Zhang L Y, Shu J. Controllable C–N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu−S batteries. Energy Storage Materials, 2022, 48: 74–81
|
9 |
Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang M Y, Sun X, Liu X X. Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie International Edition, 2021, 60(11): 5718–5722
|
10 |
Wu X, Qi Y, Hong J J, Li Z, Hernandez A S, Ji X. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angewandte Chemie International Edition, 2017, 56(42): 13026–13030
|
11 |
Dong S, Shin W, Jiang H, Wu X, Li Z, Holoubek J, Stickle W F, Key B, Liu C, Lu J, Greaney P A, Zhang X, Ji X. Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem, 2019, 5(6): 1537–1551
|
12 |
Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Advanced Materials, 2020, 32(14): 1907802
|
13 |
Li C, Yan W, Liang S, Wang P, Wang J, Fu L, Zhu Y, Chen Y, Wu Y, Huang W. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4(4): 991–998
|
14 |
Holoubek J J, Jiang H, Leonard D, Qi Y, Bustamante G C, Ji X. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chemical Communications (Cambridge), 2018, 54(70): 9805–9808
|
15 |
Li H, Yang J, Cheng J, He T, Wang B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68: 104369
|
16 |
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S, Liu Y, Dou S. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 2020, 30(14): 1909530
|
17 |
Yang Z, Liu X, He X, Lai W, Li L, Qiao Y, Chou S, Wu M. Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage. Advanced Functional Materials, 2021, 31(8): 2006457
|
18 |
WangWGangYPengJHuZYanZLaiWZhuYAppadooDYeMCaoYGuQ-FLiuH-KDouS-XChouS-L. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Advanced Functional Materials, 2022, in press
|
19 |
Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. Journal of the Electrochemical Society, 2012, 159(2): A98–A103
|
20 |
Xing J, Fu X, Guan S, Zhang Y, Lei M, Peng Z. Novel K–V–Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543: 148843
|
21 |
Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313
|
22 |
Wang Y, Chen R, Ang E H, Yan Y, Ding Y, Ke L, Luo Y, Rui K, Lin H, Zhu J. Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Advanced Sustainable Systems, 2021, 5(12): 2100223
|
23 |
Yao W, Xu J, Wang J, Luo J, Shi Q, Zhang Q. Chemically integrated multiwalled carbon nanotubes/zinc manganate nanocrystals as ultralong-life anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2170–2177
|
24 |
Yuan Y, Bin D, Dong X, Wang Y, Wang C, Xia Y. Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3655–3663
|
25 |
Wu F, Chen J, Li L, Zhao T, Chen R. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. Journal of Physical Chemistry C, 2011, 115(49): 24411–24417
|
26 |
Jiang P, Lei Z, Chen L, Shao X, Liang X, Zhang J, Wang Y, Zhang J, Liu Z, Feng J. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Applied Materials & Interfaces, 2019, 11(32): 28762–28768
|
27 |
You Y, Wu X, Yin Y, Guo Y. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1(45): 14061–14065
|
28 |
You Y, Yu X, Yin Y, Nam K, Guo Y. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8(1): 117–128
|
29 |
Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(49): 33619–33625
|
30 |
Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013–4023
|
31 |
Chen S, Yeoh W, Liu Q, Wang G. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50(12): 4557–4565
|
32 |
Peng J, Wang J, Yi H, Hu W, Yu Y, Yin J, Shen Y, Liu Y, Luo J, Xu Y, Wei P, Li Y, Jin Y, Ding Y, Miao L, Jiang J, Han J, Huang Y. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Advanced Energy Materials, 2018, 8(11): 1702856
|
33 |
Yu H, Xu J, Deng C, Xia M, Zhang X, Shu J, Wang Z. The nature of the ultrahigh initial Coulombic efficiency of Ni2Fe(CN)6 in aqueous ammonium-ion batteries. ACS Applied Energy Materials, 2021, 4(9): 9594–9599
|
34 |
Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869–4875
|
35 |
Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Materials, 2017, 16(4): 454–460
|
36 |
Zheng R, Qian S, Cheng X, Yu H, Peng N, Liu T, Zhang J, Xia M, Zhu H, Shu J. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58: 399–409
|
37 |
Liu N, Wu X, Fan L, Gong S, Guo Z, Chen A, Zhao C, Mao Y, Zhang N, Sun K. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Advanced Materials, 2020, 32(42): 1908420
|
38 |
Huang C C, Liu Y W, Zheng R T, Yang Z W, Miao Z H, Zhang J W, Cai X H, Yu H X, Zhang L Y, Shu J. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107: 64–69
|
39 |
Zheng R T, Yu H X, Zhang X K, Ding Y, Xia M T, Cao K Z, Shu J, Vlad A, Su B L A. TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angewandte Chemie International Edition, 2021, 60(34): 18430–18437
|
40 |
Li W, Zhang F, Xiang X, Zhang X. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017, 121(50): 27805–27812
|
/
〈 | 〉 |