RESEARCH ARTICLE

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

  • Haoxiang Yu 1,2 ,
  • Leiyu Fan 2 ,
  • Chenchen Deng 2 ,
  • Huihui Yan 2 ,
  • Lei Yan 2 ,
  • Jie Shu , 2 ,
  • Zhen-Bo Wang , 1
Expand
  • 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
  • 2. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

Received date: 08 Mar 2022

Accepted date: 01 Jun 2022

Published date: 15 Feb 2023

Copyright

2022 Higher Education Press

Abstract

Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

Cite this article

Haoxiang Yu , Leiyu Fan , Chenchen Deng , Huihui Yan , Lei Yan , Jie Shu , Zhen-Bo Wang . Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(2) : 226 -235 . DOI: 10.1007/s11705-022-2198-3

Acknowledgments

This work is supported by NSAF joint Fund (Grant No. U1830106), National Natural Science Foundation of China (Grant No. U1632114), Science and Technology Innovation 2025 Major Program of Ningbo (Grant No. 2018B10061), and K.C. Wong Magna Fund in Ningbo University.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2198-3 and is accessible for authorized users.
1
Liu Y W, Xu J X, Li J, Yang Z W, Huang C C, Yu H X, Zhang L Y, Shu J. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460: 214477

DOI

2
Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452: 214297

DOI

3
Zhao H, Qi Y, Liang K, Li J, Zhou L, Chen J, Huang X, Ren Y. Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Applied Materials & Interfaces, 2021, 13(51): 61555–61564

DOI

4
Yang Z, He J, Lai W H, Peng J, Liu X H, He X X, Guo X F, Li L, Qiao Y, Ma J M, Wu M, Chou S L. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angewandte Chemie International Edition, 2021, 60(52): 27086–27094

DOI

5
Ma L, Cui H, Chen S, Li X, Dong B, Zhi C. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy, 2021, 81: 105632

DOI

6
Xue Q, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Applied Materials & Interfaces, 2019, 11(25): 22339–22345

DOI

7
Xu C W, Yang Z W, Yan H H, Li J, Yu H X, Zhang L Y, Shu J. Synergistic dual conversion reactions assisting Pb−S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12): e2118675119

DOI

8
Yan H H, Yang Z W, Xu C W, Li J, Liu Y W, Zheng R T, Yu H X, Zhang L Y, Shu J. Controllable C–N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu−S batteries. Energy Storage Materials, 2022, 48: 74–81

DOI

9
Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang M Y, Sun X, Liu X X. Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie International Edition, 2021, 60(11): 5718–5722

DOI

10
Wu X, Qi Y, Hong J J, Li Z, Hernandez A S, Ji X. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angewandte Chemie International Edition, 2017, 56(42): 13026–13030

DOI

11
Dong S, Shin W, Jiang H, Wu X, Li Z, Holoubek J, Stickle W F, Key B, Liu C, Lu J, Greaney P A, Zhang X, Ji X. Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem, 2019, 5(6): 1537–1551

DOI

12
Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Advanced Materials, 2020, 32(14): 1907802

DOI

13
Li C, Yan W, Liang S, Wang P, Wang J, Fu L, Zhu Y, Chen Y, Wu Y, Huang W. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4(4): 991–998

DOI

14
Holoubek J J, Jiang H, Leonard D, Qi Y, Bustamante G C, Ji X. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chemical Communications (Cambridge), 2018, 54(70): 9805–9808

DOI

15
Li H, Yang J, Cheng J, He T, Wang B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68: 104369

DOI

16
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S, Liu Y, Dou S. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 2020, 30(14): 1909530

DOI

17
Yang Z, Liu X, He X, Lai W, Li L, Qiao Y, Chou S, Wu M. Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage. Advanced Functional Materials, 2021, 31(8): 2006457

DOI

18
WangWGangYPengJHuZYanZLaiWZhuYAppadooDYeMCaoYGuQ-FLiuH-KDouS-XChouS-L. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Advanced Functional Materials, 2022, in press

19
Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. Journal of the Electrochemical Society, 2012, 159(2): A98–A103

DOI

20
Xing J, Fu X, Guan S, Zhang Y, Lei M, Peng Z. Novel K–V–Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543: 148843

DOI

21
Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313

DOI

22
Wang Y, Chen R, Ang E H, Yan Y, Ding Y, Ke L, Luo Y, Rui K, Lin H, Zhu J. Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Advanced Sustainable Systems, 2021, 5(12): 2100223

DOI

23
Yao W, Xu J, Wang J, Luo J, Shi Q, Zhang Q. Chemically integrated multiwalled carbon nanotubes/zinc manganate nanocrystals as ultralong-life anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2170–2177

DOI

24
Yuan Y, Bin D, Dong X, Wang Y, Wang C, Xia Y. Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3655–3663

DOI

25
Wu F, Chen J, Li L, Zhao T, Chen R. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. Journal of Physical Chemistry C, 2011, 115(49): 24411–24417

DOI

26
Jiang P, Lei Z, Chen L, Shao X, Liang X, Zhang J, Wang Y, Zhang J, Liu Z, Feng J. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Applied Materials & Interfaces, 2019, 11(32): 28762–28768

DOI

27
You Y, Wu X, Yin Y, Guo Y. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1(45): 14061–14065

DOI

28
You Y, Yu X, Yin Y, Nam K, Guo Y. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8(1): 117–128

DOI

29
Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(49): 33619–33625

DOI

30
Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013–4023

DOI

31
Chen S, Yeoh W, Liu Q, Wang G. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50(12): 4557–4565

DOI

32
Peng J, Wang J, Yi H, Hu W, Yu Y, Yin J, Shen Y, Liu Y, Luo J, Xu Y, Wei P, Li Y, Jin Y, Ding Y, Miao L, Jiang J, Han J, Huang Y. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Advanced Energy Materials, 2018, 8(11): 1702856

DOI

33
Yu H, Xu J, Deng C, Xia M, Zhang X, Shu J, Wang Z. The nature of the ultrahigh initial Coulombic efficiency of Ni2Fe(CN)6 in aqueous ammonium-ion batteries. ACS Applied Energy Materials, 2021, 4(9): 9594–9599

DOI

34
Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869–4875

DOI

35
Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Materials, 2017, 16(4): 454–460

DOI

36
Zheng R, Qian S, Cheng X, Yu H, Peng N, Liu T, Zhang J, Xia M, Zhu H, Shu J. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58: 399–409

DOI

37
Liu N, Wu X, Fan L, Gong S, Guo Z, Chen A, Zhao C, Mao Y, Zhang N, Sun K. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Advanced Materials, 2020, 32(42): 1908420

DOI

38
Huang C C, Liu Y W, Zheng R T, Yang Z W, Miao Z H, Zhang J W, Cai X H, Yu H X, Zhang L Y, Shu J. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107: 64–69

DOI

39
Zheng R T, Yu H X, Zhang X K, Ding Y, Xia M T, Cao K Z, Shu J, Vlad A, Su B L A. TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angewandte Chemie International Edition, 2021, 60(34): 18430–18437

DOI

40
Li W, Zhang F, Xiang X, Zhang X. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017, 121(50): 27805–27812

DOI

Outlines

/