Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage
Haoxiang Yu, Leiyu Fan, Chenchen Deng, Huihui Yan, Lei Yan, Jie Shu, Zhen-Bo Wang
Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage
Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.
nickel ferrocyanides / NH4+ / electrochemistry / Prussian blue / aqueous ammonium ion batteries
[1] |
Liu Y W, Xu J X, Li J, Yang Z W, Huang C C, Yu H X, Zhang L Y, Shu J. Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460: 214477
CrossRef
Google scholar
|
[2] |
Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y, Shu J. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452: 214297
CrossRef
Google scholar
|
[3] |
Zhao H, Qi Y, Liang K, Li J, Zhou L, Chen J, Huang X, Ren Y. Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Applied Materials & Interfaces, 2021, 13(51): 61555–61564
CrossRef
Google scholar
|
[4] |
Yang Z, He J, Lai W H, Peng J, Liu X H, He X X, Guo X F, Li L, Qiao Y, Ma J M, Wu M, Chou S L. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angewandte Chemie International Edition, 2021, 60(52): 27086–27094
CrossRef
Google scholar
|
[5] |
Ma L, Cui H, Chen S, Li X, Dong B, Zhi C. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy, 2021, 81: 105632
CrossRef
Google scholar
|
[6] |
Xue Q, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Applied Materials & Interfaces, 2019, 11(25): 22339–22345
CrossRef
Google scholar
|
[7] |
Xu C W, Yang Z W, Yan H H, Li J, Yu H X, Zhang L Y, Shu J. Synergistic dual conversion reactions assisting Pb−S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(12): e2118675119
CrossRef
Google scholar
|
[8] |
Yan H H, Yang Z W, Xu C W, Li J, Liu Y W, Zheng R T, Yu H X, Zhang L Y, Shu J. Controllable C–N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu−S batteries. Energy Storage Materials, 2022, 48: 74–81
CrossRef
Google scholar
|
[9] |
Song Y, Pan Q, Lv H, Yang D, Qin Z, Zhang M Y, Sun X, Liu X X. Ammonium-ion storage using electrodeposited manganese oxides. Angewandte Chemie International Edition, 2021, 60(11): 5718–5722
CrossRef
Google scholar
|
[10] |
Wu X, Qi Y, Hong J J, Li Z, Hernandez A S, Ji X. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angewandte Chemie International Edition, 2017, 56(42): 13026–13030
CrossRef
Google scholar
|
[11] |
Dong S, Shin W, Jiang H, Wu X, Li Z, Holoubek J, Stickle W F, Key B, Liu C, Lu J, Greaney P A, Zhang X, Ji X. Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5. Chem, 2019, 5(6): 1537–1551
CrossRef
Google scholar
|
[12] |
Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Advanced Materials, 2020, 32(14): 1907802
CrossRef
Google scholar
|
[13] |
Li C, Yan W, Liang S, Wang P, Wang J, Fu L, Zhu Y, Chen Y, Wu Y, Huang W. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4(4): 991–998
CrossRef
Google scholar
|
[14] |
Holoubek J J, Jiang H, Leonard D, Qi Y, Bustamante G C, Ji X. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chemical Communications (Cambridge), 2018, 54(70): 9805–9808
CrossRef
Google scholar
|
[15] |
Li H, Yang J, Cheng J, He T, Wang B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68: 104369
CrossRef
Google scholar
|
[16] |
Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S, Liu Y, Dou S. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Advanced Functional Materials, 2020, 30(14): 1909530
CrossRef
Google scholar
|
[17] |
Yang Z, Liu X, He X, Lai W, Li L, Qiao Y, Chou S, Wu M. Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage. Advanced Functional Materials, 2021, 31(8): 2006457
CrossRef
Google scholar
|
[18] |
WangWGangYPengJHuZYanZLaiWZhuYAppadooDYeMCaoYGuQ-FLiuH-KDouS-XChouS-L. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Advanced Functional Materials, 2022, in press
|
[19] |
Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. Journal of the Electrochemical Society, 2012, 159(2): A98–A103
CrossRef
Google scholar
|
[20] |
Xing J, Fu X, Guan S, Zhang Y, Lei M, Peng Z. Novel K–V–Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543: 148843
CrossRef
Google scholar
|
[21] |
Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313
CrossRef
Google scholar
|
[22] |
Wang Y, Chen R, Ang E H, Yan Y, Ding Y, Ke L, Luo Y, Rui K, Lin H, Zhu J. Carbonitridation pyrolysis synthesis of Prussian blue analog-derived carbon hybrids for lithium-ion batteries. Advanced Sustainable Systems, 2021, 5(12): 2100223
CrossRef
Google scholar
|
[23] |
Yao W, Xu J, Wang J, Luo J, Shi Q, Zhang Q. Chemically integrated multiwalled carbon nanotubes/zinc manganate nanocrystals as ultralong-life anode materials for lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2170–2177
CrossRef
Google scholar
|
[24] |
Yuan Y, Bin D, Dong X, Wang Y, Wang C, Xia Y. Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3655–3663
CrossRef
Google scholar
|
[25] |
Wu F, Chen J, Li L, Zhao T, Chen R. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. Journal of Physical Chemistry C, 2011, 115(49): 24411–24417
CrossRef
Google scholar
|
[26] |
Jiang P, Lei Z, Chen L, Shao X, Liang X, Zhang J, Wang Y, Zhang J, Liu Z, Feng J. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Applied Materials & Interfaces, 2019, 11(32): 28762–28768
CrossRef
Google scholar
|
[27] |
You Y, Wu X, Yin Y, Guo Y. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1(45): 14061–14065
CrossRef
Google scholar
|
[28] |
You Y, Yu X, Yin Y, Nam K, Guo Y. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8(1): 117–128
CrossRef
Google scholar
|
[29] |
Ji Z, Han B, Liang H, Zhou C, Gao Q, Xia K, Wu J. On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(49): 33619–33625
CrossRef
Google scholar
|
[30] |
Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013–4023
CrossRef
Google scholar
|
[31] |
Chen S, Yeoh W, Liu Q, Wang G. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50(12): 4557–4565
CrossRef
Google scholar
|
[32] |
Peng J, Wang J, Yi H, Hu W, Yu Y, Yin J, Shen Y, Liu Y, Luo J, Xu Y, Wei P, Li Y, Jin Y, Ding Y, Miao L, Jiang J, Han J, Huang Y. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Advanced Energy Materials, 2018, 8(11): 1702856
CrossRef
Google scholar
|
[33] |
Yu H, Xu J, Deng C, Xia M, Zhang X, Shu J, Wang Z. The nature of the ultrahigh initial Coulombic efficiency of Ni2Fe(CN)6 in aqueous ammonium-ion batteries. ACS Applied Energy Materials, 2021, 4(9): 9594–9599
CrossRef
Google scholar
|
[34] |
Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869–4875
CrossRef
Google scholar
|
[35] |
Kim H, Cook J, Lin H, Ko J, Tolbert S, Ozolins V, Dunn B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Materials, 2017, 16(4): 454–460
CrossRef
Google scholar
|
[36] |
Zheng R, Qian S, Cheng X, Yu H, Peng N, Liu T, Zhang J, Xia M, Zhu H, Shu J. FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58: 399–409
CrossRef
Google scholar
|
[37] |
Liu N, Wu X, Fan L, Gong S, Guo Z, Chen A, Zhao C, Mao Y, Zhang N, Sun K. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Advanced Materials, 2020, 32(42): 1908420
CrossRef
Google scholar
|
[38] |
Huang C C, Liu Y W, Zheng R T, Yang Z W, Miao Z H, Zhang J W, Cai X H, Yu H X, Zhang L Y, Shu J. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107: 64–69
CrossRef
Google scholar
|
[39] |
Zheng R T, Yu H X, Zhang X K, Ding Y, Xia M T, Cao K Z, Shu J, Vlad A, Su B L A. TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angewandte Chemie International Edition, 2021, 60(34): 18430–18437
CrossRef
Google scholar
|
[40] |
Li W, Zhang F, Xiang X, Zhang X. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017, 121(50): 27805–27812
CrossRef
Google scholar
|
/
〈 | 〉 |