Frontiers of Chemical Science and Engineering >
Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides
Received date: 26 Feb 2022
Accepted date: 19 May 2022
Published date: 15 Feb 2023
Copyright
Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects.
Key words: mesoporous materials; metal oxides; fluoride ion; adsorption mechanism
Xinyuan Wang , Heriberto Pfeiffer , Jiangjiang Wei , Jinyu Wang , Jinli Zhang . Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(2) : 236 -248 . DOI: 10.1007/s11705-022-2193-8
1 |
YuZ, XuC, YuanK, GanX, FengC, WangX, ZhuL, ZhangG, XuD. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal. Journal of Hazardous Materials, 2018, 346 : 82– 92
|
2 |
AlhassanS I, HuangL, HeY, YanL, WuB, WangH. Fluoride removal from water using alumina and aluminum-based composites: a comprehensive review of progress. Critical Reviews in Environmental Science and Technology, 2021, 51( 18): 1– 35
|
3 |
ZhangJ J, YuL, YangH B, YeB C. Migration and transformation of fluoride through fluoride-containing water for the irrigation of a soil-plant system. Human and Ecological Risk Assessment, 2019, 25( 4): 1048– 1058
|
4 |
LiuW, HuangX, PengK, XiongY, ZhangJ, LuL, LiuJ, LiS. PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration. Surface and Coatings Technology, 2021, 406 : 126743
|
5 |
BorgohainX, BoruahA, SarmaG K, RashidM H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. Journal of Molecular Liquids, 2020, 305 : 112799
|
6 |
KarkiH P, KafleL, OjhaD P, SongJ H, KimH J. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Separation and Purification Technology, 2019, 210 : 913– 919
|
7 |
ContrerasM, MartinM I, GazquezM J, RomeroM, BolivarJ P. Valorisation of ilmenite mud waste in the manufacture of commercial ceramic. Construction & Building Materials, 2014, 72 : 31– 40
|
8 |
SolankiY S, AgrawalM, GuptaS, ShuklaP, MiddaM O. Application of synthesized Fe/Al/Ca based adsorbent for defluoridation of drinking water and its significant parameters optimization using response surface methodology. Journal of Environmental Chemical Engineering, 2019, 7( 6): 103465
|
9 |
AbeykoonK, DunuweeraS P, LiyanageD N D, RajapakseR M G. Removal of fluoride from aqueous solution by porous vaterite calcium carbonate nanoparticles. Materials Research Express, 2020, 7( 3): 035009
|
10 |
EslamiH, EsmaeiliA, EhrampoushM H, EbrahimiA A, TaghaviM, KhosraviR. Simultaneous presence of poly titanium chloride and Fe2O3–Mn2O3 nanocomposite in the enhanced coagulation for high rate As(V) removal from contaminated water. Journal of Water Process Engineering, 2020, 36 : 101342
|
11 |
LiuJ, WanG, PangZ, TangZ. Hollow metal–organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials. Advanced Materials, 2018, 31( 38): e1803291
|
12 |
AdhikariS P, AwasthiG P, KimK S, ChanH P, KimC S. Synthesis of three-dimensional mesoporous Cu–Al layered double hydroxide/g-C3N4 nanocomposites on Ni-foam for enhanced supercapacitors with excellent long-term cycling stability. Dalton Transactions, 2018, 47( 13): 47
|
13 |
WangH T, JinC, LiuY N, KangX H, BianS W, ZhuQ. Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co–Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Electrochimica Acta, 2018, 283 : 1789– 1797
|
14 |
LiuC, XieF. Highly efficient removal of As(III) by Fe–Mn–Ca composites with the synergistic effect of oxidation and adsorption. Science of the Total Environment, 2021, 777 : 145289
|
15 |
BaskanM B, BiyikliA R. The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology. Water Environment Research, 2021, 93( 4): 620– 635
|
16 |
XieD, GuY, WangH, WangY, QinW, WangG, ZhangH, ZhangY. Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66. Journal of Colloid and Interface Science, 2019, 542 : 269– 280
|
17 |
SinghJ, MishraN S, BanerjeeS, SharmaY C. Comparative studies of physical characteristics of raw and modified sawdust for their use as adsorbents for removal of acid dye. BioResources, 2011, 6( 3): 2732– 2743
|
18 |
QinB, LinM, YaoZ, ZhuJ, RuanJ, TangY, QiuR. A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. Journal of Hazardous Materials, 2020, 393 : 122410
|
19 |
AvgouropoulosG, IoannidesT. Effect of synthesis parameters on catalytic properties of CuO–CeO2. Applied Catalysis B: Environmental, 2006, 67( 1–2): 1– 11
|
20 |
SingK S W, WilliamsR T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science and Technology, 2004, 22( 10): 773– 782
|
21 |
ThommesM, KanekoK, NeimarkA V, OlivierJ P, Rodriguez-ReinosoF, RouquerolJ, SingK S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87( 9–10): 1051– 1069
|
22 |
KongL, AdidharmaH. A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. Chemical Engineering Journal, 2019, 375 : 122112
|
23 |
ZhuL, LiH, XiaP, LiuZ, XiongD. Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 2018, 10( 46): 39679– 39687
|
24 |
AgboviH K, WilsonL D. Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater. Carbohydrate Polymers, 2018, 189 : 360– 370
|
25 |
KangJ, LevitskaiaT G, ParkS, KimJ, VargaT, UmW. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions. Chemical Engineering Journal, 2020, 380 : 122408
|
26 |
LuY, LiuX L, HeL, ZhangY X, HuZ Y, TianG, ChengX, WuS M, LiY Z, YangX H, WangL Y, LiuJ W, JaniakC, ChangG G, LiW H, Van TendelooG, YangX Y, SuB L. Spatial heterojunction in nnanostructured TiO2 and its cascade effect for efficient photocatalysis. Nano Letters, 2020, 20( 5): 3122– 3129
|
27 |
AffonsoL N, MarquesJ L Jr, LimaV V C, GonçalvesJ O, BarbosaS C, PrimelE G, BurgoT A L, DottoG L, PintoL A A, CadavalT R S Jr. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. Journal of Hazardous Materials, 2020, 388 : 122042
|
28 |
WangX, PfeifferH, WeiJ, DanJ, WangJ, ZhangJ. 3D porous Ca-modified Mg–Zr mixed metal oxide for fluoride adsorption. Chemical Engineering Journal, 2022, 428 : 131371
|
29 |
GaoM, WangW, YangH, YeB C. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc–magnesium–aluminum ternary oxide microspheres. Chemical Engineering Journal, 2020, 380 : 122459
|
30 |
LiW, ZhangT, LvL, ChenY, TangW, TangS. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624 : 126791
|
31 |
SekarS PanchuS E KolanthaiE RajaramV SubbarayaN K. Enhanced stability of hydroxyapatite/sodium alginate nanocomposite for effective fluoride adsorption. Materials Today: Proceedings, 2021
|
32 |
YangY, LiX, GuY, LinH, JieB, ZhangQ, ZhangX. Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surfaces and Interfaces, 2022, 28 : 101649
|
33 |
GaoM, WangW, CaoM, YangH, LiY. Constructing hydrangea-like hierarchical zinc–zirconium oxide microspheres for accelerating fluoride elimination. Journal of Molecular Liquids, 2020, 317 : 114133
|
34 |
WangX, WeiJ, PengW, DanJ, WangJ, ZhangJ. Evaluation and DFT analysis of 3D porous rhombohedral Fe-modified MgO for removing fluoride efficiently. Applied Surface Science, 2021, 552 : 149423
|
35 |
ZhuL, ZhangC, WangL, ZhangJ. The simple synthesis of metal organic frameworks with high fluoride adsorption performance from water. Journal of Solid State Chemistry, 2022, 307 : 122866
|
36 |
WuB, WanJ, ZhangY, PanB C, LoI. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental Science & Technology, 2019, 54( 1): 50– 66
|
37 |
AiL, YueH, JiangJ. Sacrificial template-directed synthesis of mesoporous manganese oxide architectures with superior performance for organic dye adsorption. Nanoscale, 2012, 4( 17): 5401– 5408
|
38 |
ZhuW, LiY, DaiL, LiJ, LiX, LiW, DuanT, LeiJ, ChenT. Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 2018, 339 : 214– 222
|
39 |
CaiH, XuL, ChenG, PengC, KeF, LiuZ, LiD, ZhangZ, WanX. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Applied Surface Science, 2016, 375 : 74– 84
|
40 |
PrabhuS M, ElanchezhiyanS S, LeeG, KhanA, MeenakshiS. Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies. Chemical Engineering Journal, 2016, 300 : 334– 342
|
41 |
YanH, ChenQ, LiuJ, FengY, ShihK. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Research, 2018, 145 : 721– 730
|
42 |
ChoongC E, WongK T, JangS B, NahI W, ChoiJ, IbrahimS, YoonY, JangM. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: implications for their application in water treatment. Chemosphere, 2020, 239 : 124765
|
43 |
MandalS, MayadeviS. Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: equilibrium and regeneration studies. Journal of Hazardous Materials, 2009, 167( 1): 873– 878
|
44 |
LiF, ZhangL, EvansD G, DuanX. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244( 1): 169– 177
|
45 |
GaoM, WangW, YangH, YeB C. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc–magnesium–aluminum ternary oxide microspheres. Chemical Engineering Journal, 2020, 380 : 380
|
46 |
DouX, MohanD, PittmanC U Jr, YangS. Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal, 2012, 198 : 236– 245
|
47 |
WuX, ZhangY, DouX, ZhaoB, YangM. Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chemical Engineering Journal, 2013, 223 : 364– 370
|
48 |
LuJ, XueQ, OuyangJ. Thermal properties and tribological characteristics of CeF3 compact. Wear, 1997, 211( 1): 15– 21
|
49 |
TianJ, ZhangK, WangW, WangF, DanJ, YangS, ZhangJ, DaiB, YuF. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy & Environment, 2019, 4( 3): 311– 321
|
50 |
YuY, YuL, Paul ChenJ. Adsorption of fluoride by Fe–Mg–La triple–metal composite: adsorbent preparation, illustration of performance and study of mechanisms. Chemical Engineering Journal, 2015, 262 : 839– 846
|
/
〈 | 〉 |