Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides
Xinyuan Wang, Heriberto Pfeiffer, Jiangjiang Wei, Jinyu Wang, Jinli Zhang
Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides
Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects.
mesoporous materials / metal oxides / fluoride ion / adsorption mechanism
[1] |
YuZ, XuC, YuanK, GanX, FengC, WangX, ZhuL, ZhangG, XuD. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal. Journal of Hazardous Materials, 2018, 346 : 82– 92
CrossRef
Google scholar
|
[2] |
AlhassanS I, HuangL, HeY, YanL, WuB, WangH. Fluoride removal from water using alumina and aluminum-based composites: a comprehensive review of progress. Critical Reviews in Environmental Science and Technology, 2021, 51( 18): 1– 35
|
[3] |
ZhangJ J, YuL, YangH B, YeB C. Migration and transformation of fluoride through fluoride-containing water for the irrigation of a soil-plant system. Human and Ecological Risk Assessment, 2019, 25( 4): 1048– 1058
CrossRef
Google scholar
|
[4] |
LiuW, HuangX, PengK, XiongY, ZhangJ, LuL, LiuJ, LiS. PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration. Surface and Coatings Technology, 2021, 406 : 126743
CrossRef
Google scholar
|
[5] |
BorgohainX, BoruahA, SarmaG K, RashidM H. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. Journal of Molecular Liquids, 2020, 305 : 112799
CrossRef
Google scholar
|
[6] |
KarkiH P, KafleL, OjhaD P, SongJ H, KimH J. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Separation and Purification Technology, 2019, 210 : 913– 919
CrossRef
Google scholar
|
[7] |
ContrerasM, MartinM I, GazquezM J, RomeroM, BolivarJ P. Valorisation of ilmenite mud waste in the manufacture of commercial ceramic. Construction & Building Materials, 2014, 72 : 31– 40
CrossRef
Google scholar
|
[8] |
SolankiY S, AgrawalM, GuptaS, ShuklaP, MiddaM O. Application of synthesized Fe/Al/Ca based adsorbent for defluoridation of drinking water and its significant parameters optimization using response surface methodology. Journal of Environmental Chemical Engineering, 2019, 7( 6): 103465
CrossRef
Google scholar
|
[9] |
AbeykoonK, DunuweeraS P, LiyanageD N D, RajapakseR M G. Removal of fluoride from aqueous solution by porous vaterite calcium carbonate nanoparticles. Materials Research Express, 2020, 7( 3): 035009
CrossRef
Google scholar
|
[10] |
EslamiH, EsmaeiliA, EhrampoushM H, EbrahimiA A, TaghaviM, KhosraviR. Simultaneous presence of poly titanium chloride and Fe2O3–Mn2O3 nanocomposite in the enhanced coagulation for high rate As(V) removal from contaminated water. Journal of Water Process Engineering, 2020, 36 : 101342
CrossRef
Google scholar
|
[11] |
LiuJ, WanG, PangZ, TangZ. Hollow metal–organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials. Advanced Materials, 2018, 31( 38): e1803291
CrossRef
Google scholar
|
[12] |
AdhikariS P, AwasthiG P, KimK S, ChanH P, KimC S. Synthesis of three-dimensional mesoporous Cu–Al layered double hydroxide/g-C3N4 nanocomposites on Ni-foam for enhanced supercapacitors with excellent long-term cycling stability. Dalton Transactions, 2018, 47( 13): 47
CrossRef
Google scholar
|
[13] |
WangH T, JinC, LiuY N, KangX H, BianS W, ZhuQ. Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co–Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Electrochimica Acta, 2018, 283 : 1789– 1797
CrossRef
Google scholar
|
[14] |
LiuC, XieF. Highly efficient removal of As(III) by Fe–Mn–Ca composites with the synergistic effect of oxidation and adsorption. Science of the Total Environment, 2021, 777 : 145289
CrossRef
Google scholar
|
[15] |
BaskanM B, BiyikliA R. The adsorption of fluoride from aqueous solutions by Fe, Mn, and Fe/Mn modified natural clinoptilolite and optimization using response surface methodology. Water Environment Research, 2021, 93( 4): 620– 635
|
[16] |
XieD, GuY, WangH, WangY, QinW, WangG, ZhangH, ZhangY. Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66. Journal of Colloid and Interface Science, 2019, 542 : 269– 280
CrossRef
Google scholar
|
[17] |
SinghJ, MishraN S, BanerjeeS, SharmaY C. Comparative studies of physical characteristics of raw and modified sawdust for their use as adsorbents for removal of acid dye. BioResources, 2011, 6( 3): 2732– 2743
|
[18] |
QinB, LinM, YaoZ, ZhuJ, RuanJ, TangY, QiuR. A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. Journal of Hazardous Materials, 2020, 393 : 122410
CrossRef
Google scholar
|
[19] |
AvgouropoulosG, IoannidesT. Effect of synthesis parameters on catalytic properties of CuO–CeO2. Applied Catalysis B: Environmental, 2006, 67( 1–2): 1– 11
CrossRef
Google scholar
|
[20] |
SingK S W, WilliamsR T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science and Technology, 2004, 22( 10): 773– 782
CrossRef
Google scholar
|
[21] |
ThommesM, KanekoK, NeimarkA V, OlivierJ P, Rodriguez-ReinosoF, RouquerolJ, SingK S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87( 9–10): 1051– 1069
CrossRef
Google scholar
|
[22] |
KongL, AdidharmaH. A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. Chemical Engineering Journal, 2019, 375 : 122112
CrossRef
Google scholar
|
[23] |
ZhuL, LiH, XiaP, LiuZ, XiongD. Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 2018, 10( 46): 39679– 39687
CrossRef
Google scholar
|
[24] |
AgboviH K, WilsonL D. Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater. Carbohydrate Polymers, 2018, 189 : 360– 370
CrossRef
Google scholar
|
[25] |
KangJ, LevitskaiaT G, ParkS, KimJ, VargaT, UmW. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions. Chemical Engineering Journal, 2020, 380 : 122408
CrossRef
Google scholar
|
[26] |
LuY, LiuX L, HeL, ZhangY X, HuZ Y, TianG, ChengX, WuS M, LiY Z, YangX H, WangL Y, LiuJ W, JaniakC, ChangG G, LiW H, Van TendelooG, YangX Y, SuB L. Spatial heterojunction in nnanostructured TiO2 and its cascade effect for efficient photocatalysis. Nano Letters, 2020, 20( 5): 3122– 3129
CrossRef
Google scholar
|
[27] |
AffonsoL N, MarquesJ L Jr, LimaV V C, GonçalvesJ O, BarbosaS C, PrimelE G, BurgoT A L, DottoG L, PintoL A A, CadavalT R S Jr. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. Journal of Hazardous Materials, 2020, 388 : 122042
CrossRef
Google scholar
|
[28] |
WangX, PfeifferH, WeiJ, DanJ, WangJ, ZhangJ. 3D porous Ca-modified Mg–Zr mixed metal oxide for fluoride adsorption. Chemical Engineering Journal, 2022, 428 : 131371
CrossRef
Google scholar
|
[29] |
GaoM, WangW, YangH, YeB C. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc–magnesium–aluminum ternary oxide microspheres. Chemical Engineering Journal, 2020, 380 : 122459
CrossRef
Google scholar
|
[30] |
LiW, ZhangT, LvL, ChenY, TangW, TangS. Room-temperature synthesis of MIL-100(Fe) and its adsorption performance for fluoride removal from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624 : 126791
CrossRef
Google scholar
|
[31] |
SekarS PanchuS E KolanthaiE RajaramV SubbarayaN K. Enhanced stability of hydroxyapatite/sodium alginate nanocomposite for effective fluoride adsorption. Materials Today: Proceedings, 2021
|
[32] |
YangY, LiX, GuY, LinH, JieB, ZhangQ, ZhangX. Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surfaces and Interfaces, 2022, 28 : 101649
CrossRef
Google scholar
|
[33] |
GaoM, WangW, CaoM, YangH, LiY. Constructing hydrangea-like hierarchical zinc–zirconium oxide microspheres for accelerating fluoride elimination. Journal of Molecular Liquids, 2020, 317 : 114133
CrossRef
Google scholar
|
[34] |
WangX, WeiJ, PengW, DanJ, WangJ, ZhangJ. Evaluation and DFT analysis of 3D porous rhombohedral Fe-modified MgO for removing fluoride efficiently. Applied Surface Science, 2021, 552 : 149423
CrossRef
Google scholar
|
[35] |
ZhuL, ZhangC, WangL, ZhangJ. The simple synthesis of metal organic frameworks with high fluoride adsorption performance from water. Journal of Solid State Chemistry, 2022, 307 : 122866
CrossRef
Google scholar
|
[36] |
WuB, WanJ, ZhangY, PanB C, LoI. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental Science & Technology, 2019, 54( 1): 50– 66
CrossRef
Google scholar
|
[37] |
AiL, YueH, JiangJ. Sacrificial template-directed synthesis of mesoporous manganese oxide architectures with superior performance for organic dye adsorption. Nanoscale, 2012, 4( 17): 5401– 5408
CrossRef
Google scholar
|
[38] |
ZhuW, LiY, DaiL, LiJ, LiX, LiW, DuanT, LeiJ, ChenT. Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 2018, 339 : 214– 222
CrossRef
Google scholar
|
[39] |
CaiH, XuL, ChenG, PengC, KeF, LiuZ, LiD, ZhangZ, WanX. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Applied Surface Science, 2016, 375 : 74– 84
CrossRef
Google scholar
|
[40] |
PrabhuS M, ElanchezhiyanS S, LeeG, KhanA, MeenakshiS. Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies. Chemical Engineering Journal, 2016, 300 : 334– 342
CrossRef
Google scholar
|
[41] |
YanH, ChenQ, LiuJ, FengY, ShihK. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Research, 2018, 145 : 721– 730
CrossRef
Google scholar
|
[42] |
ChoongC E, WongK T, JangS B, NahI W, ChoiJ, IbrahimS, YoonY, JangM. Fluoride removal by palm shell waste based powdered activated carbon vs. functionalized carbon with magnesium silicate: implications for their application in water treatment. Chemosphere, 2020, 239 : 124765
CrossRef
Google scholar
|
[43] |
MandalS, MayadeviS. Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: equilibrium and regeneration studies. Journal of Hazardous Materials, 2009, 167( 1): 873– 878
CrossRef
Google scholar
|
[44] |
LiF, ZhangL, EvansD G, DuanX. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244( 1): 169– 177
CrossRef
Google scholar
|
[45] |
GaoM, WangW, YangH, YeB C. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc–magnesium–aluminum ternary oxide microspheres. Chemical Engineering Journal, 2020, 380 : 380
CrossRef
Google scholar
|
[46] |
DouX, MohanD, PittmanC U Jr, YangS. Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal, 2012, 198 : 236– 245
CrossRef
Google scholar
|
[47] |
WuX, ZhangY, DouX, ZhaoB, YangM. Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: characterization of adsorption sites and adsorbed fluorine complex species. Chemical Engineering Journal, 2013, 223 : 364– 370
CrossRef
Google scholar
|
[48] |
LuJ, XueQ, OuyangJ. Thermal properties and tribological characteristics of CeF3 compact. Wear, 1997, 211( 1): 15– 21
CrossRef
Google scholar
|
[49] |
TianJ, ZhangK, WangW, WangF, DanJ, YangS, ZhangJ, DaiB, YuF. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy & Environment, 2019, 4( 3): 311– 321
CrossRef
Google scholar
|
[50] |
YuY, YuL, Paul ChenJ. Adsorption of fluoride by Fe–Mg–La triple–metal composite: adsorbent preparation, illustration of performance and study of mechanisms. Chemical Engineering Journal, 2015, 262 : 839– 846
CrossRef
Google scholar
|
/
〈 | 〉 |