Front. Chem. Sci. Eng. All Journals
RESEARCH ARTICLE

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites

  • Yuxuan Xu 1 ,
  • Guanglong Dai , 1 ,
  • Shibin Nie , 1 ,
  • Jinian Yang 2 ,
  • Song Liu 2 ,
  • Hong Zhang 1 ,
  • Xiang Dong 1
Expand
  • 1. School of Safety Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • 2. School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

Received date: 03 Dec 2021

Accepted date: 27 Feb 2022

Published date: 17 Oct 2022

Copyright

2022 Higher Education Press

Abstract

Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

Cite this article

Yuxuan Xu, Guanglong Dai, Shibin Nie, Jinian Yang, Song Liu, Hong Zhang, Xiang Dong. Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites[J]. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1493-1504. DOI: 10.1007/s11705-022-2168-9

Acknowledgments

The authors gratefully acknowledge the Key research and development project in Anhui Province (Grant No. 2022i01020016), the National Natural Science Foundation of China (Grant No. 51775001), the Anhui Province Natural Science Foundation (Grant Nos. 1908085J20, 2008085QE269), the University Synergy Innovation Program of Anhui Province (Grant Nos. GXXT-2019-027, GXXT-2020-057), the Natural Science Research Project of Universities in Anhui Province (Grant No. KJ2020A0326) and the Leading Talents Project in Colleges and Universities of Anhui Province.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2168-9 and is accessible for authorized users.
1
Xue Y J, Shen M X, Zeng S H, Zhang W, Hao L Y, Yang L, Song P A. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites. Materials Research Express, 2019, 6( 12): 125003

DOI

2
Azeez A A, Rhee K Y, Park S J, Hui D. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45( 1): 308– 320

DOI

3
Wetzel B, Haupert F, Zhang M Q. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63( 14): 2055– 2067

DOI

4
Chen J S, Yang J, Chen B B, Liu S, Dong J Z, Li C S. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305 : 23– 28

DOI

5
Wu F, Zhao W J, Chen H, Zeng Z X, Wu X D, Xue Q J. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49( 2): 85– 92

DOI

6
Song J, Dai Z D, Li J Y, Zhao H C, Wang L P. Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite. High Performance Polymers, 2019, 31( 1): 116– 123

DOI

7
Mohan T P, Kanny K. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribology Transactions, 2017, 60( 4): 681– 692

DOI

8
Qiu S L, Hu Y X, Shi Y Q, Hou Y B, Kan Y C, Chu F K, Sheng H, Yuen R K K, Xing W Y. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114 : 407– 417

DOI

9
Gupta S, Hammann T, Johnson R, Riyad M F. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58( 3): 560– 566

DOI

10
Bian Z F, Kawi S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339 : 3– 23

DOI

11
Yang J N, Li Z Y, Xu Y X, Nie S B, Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27( 9): 274

DOI

12
Nie S B, Jin D, Xu Y X, Han C, Dong X, Yang J N. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9( 5): 10189– 10197

DOI

13
Yang J N, Feng X S, Nie S B, Xu Y X, Li Z Y. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16( 4): 484– 497

DOI

14
Shi X W, Dai X, Cao Y, Li J W, Huo C G, Wang X L. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Industrial & Engineering Chemistry Research, 2017, 56( 14): 3887– 3894

DOI

15
Nabipour H, Wang X, Song L, Hu Y. Metal-organic frameworks for flame retardant polymers application: a critical review. Composites. Part A, Applied Science and Manufacturing, 2020, 139 : 106113

DOI

16
Zhang L, Chen S Q, Pan Y T, Zhang S D, Nie S B, Wei P, Zhang X Q, Wang R, Wang D Y. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustainable Chemistry & Engineering, 2019, 7( 10): 9272– 9280

DOI

17
Yang J N, Xu Y X, Su C, Nie S B, Li Z Y. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1281– 1295

DOI

18
Yaghi O M, Li H, Groy T L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society, 1996, 118( 38): 9096– 9101

DOI

19
Kang L, Sun S X, Kong L B, Lang J W, Luo Y C. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 2014, 25( 6): 957– 961

DOI

20
Burattin P, Che M, Louis C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101( 36): 7060– 7074

DOI

21
Fukushima Y, Tani M. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69( 12): 3667– 3671

DOI

22
Liu L, Zhu M H, Xu X D, Li X, Ma Z W, Jiang Z, Pich A, Wang H, Song P A. Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Advanced Materials, 2021, 33( 51): 2105829

DOI

23
Xu X D, Li L J, Seraji S M, Liu L, Jiang Z, Xu Z G, Li X, Zhao S, Wang H, Song P A. Bioinspired, strong, and tough nanostructured poly(vinyl alcohol)/inositol composites: how hydrogen-bond cross-linking works?. Macromolecules, 2021, 54( 20): 9510– 9521

DOI

24
Ohtsuka K, Koga J, Suda M, Ono M. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route. Journal of the American Ceramic Society, 1989, 72( 10): 1924– 1930

DOI

25
Gérard P, Herbillon A. Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays and Clay Minerals, 1983, 31( 2): 143– 151

DOI

26
da Fonseca M G, Silva C R, Barone J S, Airoldi C. Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10( 3): 789– 795

DOI

27
Hang X X, Xue Y D, Cheng Y, Du M, Du L T, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: a facile synthesis of 1D micro-/nanomaterials. Inorganic Chemistry, 2021, 60( 17): 13168– 13176

DOI

28
Liang J B, Ma R Z, Iyi N B O, Ebina Y, Takada K, Sasaki T. Topochemical synthesis, anion exchange, and exfoliation of Co−Ni layered double hydroxides: a route to positively charged Co−Ni hydroxide nanosheets with tunable composition. Chemistry of Materials, 2010, 22( 2): 371– 378

DOI

29
Rong Q, Long L L, Zhang X, Huang Y X, Yu H Q. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015, 153 : 63– 69

DOI

30
Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8( 1): 945– 951

DOI

31
Wang K, Wu J S, Ye L, Zeng H M. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Composites. Part A, Applied Science and Manufacturing, 2003, 34( 12): 1199– 1205

DOI

32
Chan M L, Lau K T, Wong T T, Ho M P, Hui D. Mechanism of reinforcement in a nanoclay/polymer composite. Composites. Part B, Engineering, 2011, 42( 6): 1708– 1712

DOI

33
Wu C L, Zhang M Q, Rong M Z, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62( 10): 1327– 1340

DOI

34
Ma X Y, Zhang W D. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94( 7): 1103– 1109

DOI

35
Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43( 16): 6515– 6530

DOI

36
Ma Z W, Liu X C, Xu X D, Liu L, Yu B, Maluk C, Huang G B, Wang H, Song P A. Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano, 2021, 15( 7): 11667– 11680

DOI

37
Liu L, Zhu M H, Shi Y Q, Xu X D, Ma Z W, Yu B, Fu S Y, Huang G B, Wang H, Song P A. Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424 : 130338

DOI

38
Lou G B, Ma Z W, Dai J F, Bai Z C, Fu S Y, Huo S Q, Qian L J, Song P A. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering, 2021, 9( 40): 13595– 13605

DOI

39
Liu L, Zhu M H, Ma Z W, Xu X D, Seraji S M, Yu B, Sun Z Q, Wang H, Song P A. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430 : 132712

DOI

40
Seraji S M, Song P A, Varley R J, Bourbigot S, Voice D, Wang H. Fire-retardant unsaturated polyester thermosets: the state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022, 430 : 132785

DOI

41
Ma H Y, Song P A, Fang Z P. Flame retarded polymer nanocomposites: development, trend and future perspective. Science China. Chemistry, 2011, 54( 2): 302– 313

DOI

42
Yang J N, Liu Y, Xu Y X, Nie S B, Li Z Y. Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55( 24): 10593– 10610

DOI

43
Myshkin N, Kovalev A. Adhesion and surface forces in polymer tribology—a review. Friction, 2018, 6( 2): 143– 155

DOI

44
Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R: Reports, 2009, 63( 2): 31– 80

DOI

/