COMMUNICATION

Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer

  • Satoshi KANECO , 1 ,
  • Hiroaki KITANAGA 1 ,
  • Hideyuki KATSUMATA 1 ,
  • Tohru SUZUKI 2
Expand
  • 1. Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514–8507, Japan
  • 2. Environmental Preservation Center, Mie University, Mie 514–8507, Japan

Received date: 30 Jul 2012

Accepted date: 28 Sep 2012

Published date: 05 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In the present work, a new preconcentration method of trace elements by adsorption onto a niobium wire has been developed for electrothermal atomization atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer. Detection limits (pg·mL–1) by this method combined with ETAAS were 45 for bismuth, 7.0 for cadmium, 20 for copper, 1.3 for gold, 36 for lead, 65 for manganese, 9.5 for rhodium and 19 for silver.

Cite this article

Satoshi KANECO , Hiroaki KITANAGA , Hideyuki KATSUMATA , Tohru SUZUKI . Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(4) : 432 -435 . DOI: 10.1007/s11705-012-1219-z

Acknowledgments

The present research was partly supported by Grant-in-Aid for Scientific Research (C) 24510096 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. All experiments were conducted at Mie University. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the view of the supporting organizations.
1
Camel V. Solid phase extraction of trace elements. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2003, 58(7): 1177–1233

DOI

2
Terada K. Preconcentration of trace elements by sorption. Analytical Sciences, 1991, 7(2): 187–198

DOI

3
Wolff E W, Landy M P, Peel D A. Preconcentration of cadmium, copper, lead, and zinc in water at the 10-12 g/g level by adsorption onto tungsten wire followed by flameless atomic absorption spectrometry. Analytical Chemistry, 1981, 53(11): 1566–1570

DOI

4
Lu G, Xu J, Xu T, Jin L, Fang Y. Determination of trace amounts of gold in waste water by graphite furnace atomic-absorption spectrophotometry with preconcentration on trioctylphosphine oxide chemically modified tungsten wire matrix. Talanta, 1992, 39(1): 51–53

DOI

5
Yavuz Ataman O. Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(8): 825–834

DOI

6
Liu R, Wu P, Xu K, Lv Y, Hou X. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(6): 704–709

DOI

7
Simião de Souza S, Santos D Jr, Kruga F J, Barbosa F Jr. Exploiting in situ hydride trapping in tungsten coil atomizer for Se and As determination in biological and water samples. Talanta, 2007, 73(3): 451–457

DOI

8
Zachariadis G, ed. Inductively Coupled Plasma Atomic Emission Spectrometry: A Model Multi-elemental Technique for Modern Analytical Laboratory. New York: Nova Science Publishers, Inc., 2012

9
Nelms S, ed. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford: Blackwell, 2005

10
Sawada K, ed. A Laboratory Guide to Instrumental Analysis for Young Chemists (In Japanese). Tokyo: Kodan Scientific Co., 2006

11
Svanberg S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. 4th edition. Berlin: Springer, 2004

12
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling for direct analysis of lead in Bangladeshi vegetable samples by molybdenum electrothermal atomizer atomic absorption spectrometry. ITE Letters on Batteries, New Technologies & Medicine , 2004, 5(4): 363–368

13
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer. Annali di Chimica, 2005, 5(5): 325–333

DOI

14
Amin M N, Okada H, Itoh S, Suzuki T, Kaneco S, Ohta K. Determination of chromium in river waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Fresenius' Journal of Analytical Chemistry, 2001, 371(8): 1130–1133

DOI

15
Amin M N, Kaneco S, Nomura K, Suzuki T, Ohta K. Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Mikrochimica Acta, 2003, 141(1-2): 87–91

DOI

16
Rahman M A, Kaneco S, Amin M N, Suzuki T, Ohta K. Determination of silver in environmental samples by tungsten wire preconcentration method—electrothermal atomic absorption spectrometry. Talanta, 2004, 62(5): 1047–1050

DOI

17
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration of trace lead by adsorption onto a tantalum wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Microchemical Journal, 2007, 86(1): 89–93

DOI

18
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Mikrochimica Acta, 2008, 162(1-2): 73–79

DOI

19
Suzuki S, Ohta K. Reduction of interferences with thiourea in the determination of cadmium by electrothermal atomic absorption spectrometry. Analytical Chemistry, 1982, 54(11): 1686–1689

DOI

20
Ohta K, Kaneco S, Itoh S, Mizuno T. Electrothermal atomic absorption spectrometric determination of silver in biological materials with a molybdenum tube atomizer. Analytica Chimica Acta, 1992, 267(1): 131–136

DOI

21
Suzuki S, Ohta K. Electrothermal atomic absorption spectrometry with metal atomizer. Prog in Anal Atom Spectrosc, 1983, 6: 49–162

22
Ohta K, Isiyama T, Yokoyama M, Mizuno T. Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer. Talanta, 1995, 42(2): 263–267

DOI

23
Ohta K, Ogawa J, Mizuno T. Determination of rhodium in biological materials by electrothermal atomic absorption spectrometry with a tungsten tube atomizer. Analytical Letters, 1997, 30(4): 787–795

DOI

Options
Outlines

/