Frontiers of Chemical Science and Engineering >
Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer
Received date: 30 Jul 2012
Accepted date: 28 Sep 2012
Published date: 05 Dec 2012
Copyright
In the present work, a new preconcentration method of trace elements by adsorption onto a niobium wire has been developed for electrothermal atomization atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer. Detection limits (pg·mL–1) by this method combined with ETAAS were 45 for bismuth, 7.0 for cadmium, 20 for copper, 1.3 for gold, 36 for lead, 65 for manganese, 9.5 for rhodium and 19 for silver.
Satoshi KANECO , Hiroaki KITANAGA , Hideyuki KATSUMATA , Tohru SUZUKI . Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(4) : 432 -435 . DOI: 10.1007/s11705-012-1219-z
1 |
Camel V. Solid phase extraction of trace elements. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2003, 58(7): 1177–1233
|
2 |
Terada K. Preconcentration of trace elements by sorption. Analytical Sciences, 1991, 7(2): 187–198
|
3 |
Wolff E W, Landy M P, Peel D A. Preconcentration of cadmium, copper, lead, and zinc in water at the 10-12 g/g level by adsorption onto tungsten wire followed by flameless atomic absorption spectrometry. Analytical Chemistry, 1981, 53(11): 1566–1570
|
4 |
Lu G, Xu J, Xu T, Jin L, Fang Y. Determination of trace amounts of gold in waste water by graphite furnace atomic-absorption spectrophotometry with preconcentration on trioctylphosphine oxide chemically modified tungsten wire matrix. Talanta, 1992, 39(1): 51–53
|
5 |
Yavuz Ataman O. Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(8): 825–834
|
6 |
Liu R, Wu P, Xu K, Lv Y, Hou X. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(6): 704–709
|
7 |
Simião de Souza S, Santos D Jr, Kruga F J, Barbosa F Jr. Exploiting in situ hydride trapping in tungsten coil atomizer for Se and As determination in biological and water samples. Talanta, 2007, 73(3): 451–457
|
8 |
Zachariadis G, ed. Inductively Coupled Plasma Atomic Emission Spectrometry: A Model Multi-elemental Technique for Modern Analytical Laboratory. New York: Nova Science Publishers, Inc., 2012
|
9 |
Nelms S, ed. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford: Blackwell, 2005
|
10 |
Sawada K, ed. A Laboratory Guide to Instrumental Analysis for Young Chemists (In Japanese). Tokyo: Kodan Scientific Co., 2006
|
11 |
Svanberg S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. 4th edition. Berlin: Springer, 2004
|
12 |
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling for direct analysis of lead in Bangladeshi vegetable samples by molybdenum electrothermal atomizer atomic absorption spectrometry. ITE Letters on Batteries, New Technologies & Medicine , 2004, 5(4): 363–368
|
13 |
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer. Annali di Chimica, 2005, 5(5): 325–333
|
14 |
Amin M N, Okada H, Itoh S, Suzuki T, Kaneco S, Ohta K. Determination of chromium in river waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Fresenius' Journal of Analytical Chemistry, 2001, 371(8): 1130–1133
|
15 |
Amin M N, Kaneco S, Nomura K, Suzuki T, Ohta K. Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Mikrochimica Acta, 2003, 141(1-2): 87–91
|
16 |
Rahman M A, Kaneco S, Amin M N, Suzuki T, Ohta K. Determination of silver in environmental samples by tungsten wire preconcentration method—electrothermal atomic absorption spectrometry. Talanta, 2004, 62(5): 1047–1050
|
17 |
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration of trace lead by adsorption onto a tantalum wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Microchemical Journal, 2007, 86(1): 89–93
|
18 |
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Mikrochimica Acta, 2008, 162(1-2): 73–79
|
19 |
Suzuki S, Ohta K. Reduction of interferences with thiourea in the determination of cadmium by electrothermal atomic absorption spectrometry. Analytical Chemistry, 1982, 54(11): 1686–1689
|
20 |
Ohta K, Kaneco S, Itoh S, Mizuno T. Electrothermal atomic absorption spectrometric determination of silver in biological materials with a molybdenum tube atomizer. Analytica Chimica Acta, 1992, 267(1): 131–136
|
21 |
Suzuki S, Ohta K. Electrothermal atomic absorption spectrometry with metal atomizer. Prog in Anal Atom Spectrosc, 1983, 6: 49–162
|
22 |
Ohta K, Isiyama T, Yokoyama M, Mizuno T. Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer. Talanta, 1995, 42(2): 263–267
|
23 |
Ohta K, Ogawa J, Mizuno T. Determination of rhodium in biological materials by electrothermal atomic absorption spectrometry with a tungsten tube atomizer. Analytical Letters, 1997, 30(4): 787–795
|
/
〈 | 〉 |