Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer

Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI

PDF(75 KB)
PDF(75 KB)
Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (4) : 432-435. DOI: 10.1007/s11705-012-1219-z
COMMUNICATION
COMMUNICATION

Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer

Author information +
History +

Abstract

In the present work, a new preconcentration method of trace elements by adsorption onto a niobium wire has been developed for electrothermal atomization atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer. Detection limits (pg·mL–1) by this method combined with ETAAS were 45 for bismuth, 7.0 for cadmium, 20 for copper, 1.3 for gold, 36 for lead, 65 for manganese, 9.5 for rhodium and 19 for silver.

Keywords

preconcentration / adsorption onto niobium wire / electrothermal atomization atomic absorption spectrometry / tungsten tube atomizer / trace elements

Cite this article

Download citation ▾
Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI. Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Front Chem Sci Eng, 2012, 6(4): 432‒435 https://doi.org/10.1007/s11705-012-1219-z

References

[1]
Camel V. Solid phase extraction of trace elements. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2003, 58(7): 1177–1233
CrossRef Google scholar
[2]
Terada K. Preconcentration of trace elements by sorption. Analytical Sciences, 1991, 7(2): 187–198
CrossRef Google scholar
[3]
Wolff E W, Landy M P, Peel D A. Preconcentration of cadmium, copper, lead, and zinc in water at the 10-12 g/g level by adsorption onto tungsten wire followed by flameless atomic absorption spectrometry. Analytical Chemistry, 1981, 53(11): 1566–1570
CrossRef Google scholar
[4]
Lu G, Xu J, Xu T, Jin L, Fang Y. Determination of trace amounts of gold in waste water by graphite furnace atomic-absorption spectrophotometry with preconcentration on trioctylphosphine oxide chemically modified tungsten wire matrix. Talanta, 1992, 39(1): 51–53
CrossRef Google scholar
[5]
Yavuz Ataman O. Vapor generation and atom traps: atomic absorption spectrometry at the ng/L level. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(8): 825–834
CrossRef Google scholar
[6]
Liu R, Wu P, Xu K, Lv Y, Hou X. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2008, 63(6): 704–709
CrossRef Google scholar
[7]
Simião de Souza S, Santos D Jr, Kruga F J, Barbosa F Jr. Exploiting in situ hydride trapping in tungsten coil atomizer for Se and As determination in biological and water samples. Talanta, 2007, 73(3): 451–457
CrossRef Google scholar
[8]
Zachariadis G, ed. Inductively Coupled Plasma Atomic Emission Spectrometry: A Model Multi-elemental Technique for Modern Analytical Laboratory. New York: Nova Science Publishers, Inc., 2012
[9]
Nelms S, ed. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford: Blackwell, 2005
[10]
Sawada K, ed. A Laboratory Guide to Instrumental Analysis for Young Chemists (In Japanese). Tokyo: Kodan Scientific Co., 2006
[11]
Svanberg S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. 4th edition. Berlin: Springer, 2004
[12]
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling for direct analysis of lead in Bangladeshi vegetable samples by molybdenum electrothermal atomizer atomic absorption spectrometry. ITE Letters on Batteries, New Technologies & Medicine , 2004, 5(4): 363–368
[13]
Rahman M A, Kaneco S, Suzuki T, Katsumata H, Ohta K. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer. Annali di Chimica, 2005, 5(5): 325–333
CrossRef Google scholar
[14]
Amin M N, Okada H, Itoh S, Suzuki T, Kaneco S, Ohta K. Determination of chromium in river waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Fresenius' Journal of Analytical Chemistry, 2001, 371(8): 1130–1133
CrossRef Google scholar
[15]
Amin M N, Kaneco S, Nomura K, Suzuki T, Ohta K. Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Mikrochimica Acta, 2003, 141(1-2): 87–91
CrossRef Google scholar
[16]
Rahman M A, Kaneco S, Amin M N, Suzuki T, Ohta K. Determination of silver in environmental samples by tungsten wire preconcentration method—electrothermal atomic absorption spectrometry. Talanta, 2004, 62(5): 1047–1050
CrossRef Google scholar
[17]
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration of trace lead by adsorption onto a tantalum wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Microchemical Journal, 2007, 86(1): 89–93
CrossRef Google scholar
[18]
Amin M N, Kaneco S, Nakano Y, Katsumata H, Suzuki T, Ohta K. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Mikrochimica Acta, 2008, 162(1-2): 73–79
CrossRef Google scholar
[19]
Suzuki S, Ohta K. Reduction of interferences with thiourea in the determination of cadmium by electrothermal atomic absorption spectrometry. Analytical Chemistry, 1982, 54(11): 1686–1689
CrossRef Google scholar
[20]
Ohta K, Kaneco S, Itoh S, Mizuno T. Electrothermal atomic absorption spectrometric determination of silver in biological materials with a molybdenum tube atomizer. Analytica Chimica Acta, 1992, 267(1): 131–136
CrossRef Google scholar
[21]
Suzuki S, Ohta K. Electrothermal atomic absorption spectrometry with metal atomizer. Prog in Anal Atom Spectrosc, 1983, 6: 49–162
[22]
Ohta K, Isiyama T, Yokoyama M, Mizuno T. Determination of gold in biological materials by electrothermal atomic absorption spectrometry with a molybdenum tube atomizer. Talanta, 1995, 42(2): 263–267
CrossRef Google scholar
[23]
Ohta K, Ogawa J, Mizuno T. Determination of rhodium in biological materials by electrothermal atomic absorption spectrometry with a tungsten tube atomizer. Analytical Letters, 1997, 30(4): 787–795
CrossRef Google scholar

Acknowledgments

The present research was partly supported by Grant-in-Aid for Scientific Research (C) 24510096 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. All experiments were conducted at Mie University. Any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the view of the supporting organizations.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(75 KB)

Accesses

Citations

Detail

Sections
Recommended

/