RESEARCH ARTICLE

Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes

  • Yuya KUMAGAI 1 ,
  • Hirokazu USUKI 1,2 ,
  • Yukihiro YAMAMOTO 1 ,
  • Akihiro YAMASATO 3 ,
  • Takafumi MUKAIHARA 1 ,
  • Tadashi HATANAKA , 1
Expand
  • 1. Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama 716-1241, Japan
  • 2. Research Fellow of the Japan Society for the Promotion of Science (JSPS), Japan
  • 3. Nagoya University, Nagoya 464-8601, Japan

Received date: 30 Nov 2011

Accepted date: 26 Feb 2012

Published date: 05 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Wood biomass is anticipated to serve as a substitute for carbon source, which has no feedstock competition with foods. Biomass is commonly used for the production of bio-ethanol by a series of processes such as pretreatment, enzymatic degradation, and fermentation. Hemicellulose, constituting 20 wt-% – 40 wt-% of biomass materials, contains various kinds of saccharides known to be bioactive substrates. Practical usage of hemicellulose is generally limited to its conversion to bio-ethanol. Here, we aimed to prepare hemicellulolic oligosaccharides, more valuable products other than ethanol. Therefore, the Hinoki slurry was treated with lime at room temperature for 3 h, and then neutralized with HCl. The resulting sample was treated with 13 types of commercial enzymes, and the saccharides produced in the supernatant were evaluated. The result showed that the commercial enzyme Cellulase SS (Nagase & Co., LTD.) effectively degraded the slurry to produce disaccharides and trisaccharides. Analysis of sugar components by liquid chromatography/mass spectrography (LC/MS) after the derivation with ethyl 4-aminobenzoate (ABEE) showed that mannobiose, mannotriose, and cellobiose were the major oligosaccharides. These results indicate valuable oligosaccharides can be successfully produced from Hinoki softwood slurry.

Cite this article

Yuya KUMAGAI , Hirokazu USUKI , Yukihiro YAMAMOTO , Akihiro YAMASATO , Takafumi MUKAIHARA , Tadashi HATANAKA . Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(2) : 224 -231 . DOI: 10.1007/s11705-012-1280-7

Acknowledgments

This work was supported in part by Industry Development Division, Department of Industry and Labor, Okayama Prefectural Government and the Yakumo Foundation for Environmental Science.
1
Nishiyama Y, Johnson G P, French A D, Forsyth V T, Langan P. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I beta. Biomacromolecules, 2008, 9(11): 3133–3140

DOI

2
Shrestha P, Khanal S K, Pometto A L III, Leeuwen J V. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresource Technology, 2010, 101: 8698–8705

DOI

3
Cervero J M, Skovgaard P A, Felby C, Sorensen H R, Jorgensen H. Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme and Microbial Technology, 2010, 46(3–4): 177–184

DOI

4
Luo X, Zhan H, Chai X S, Fu S, Liu J. A novel method for determination of aromatic aldehyde monomers in lignin degradation liquor. Industrial & Engineering Chemistry Research, 2009, 48(5): 2713–2716

DOI

5
Voitl T, Rohr P R V. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Industrial & Engineering Chemistry Research, 2010, 49(2): 520–525

DOI

6
Jin Y, Cheng X, Zheng Z. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology, 2010, 101(6): 2046–2048

DOI

7
Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria V S, Kondo A. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 2009, 82(6): 1067–1078

DOI

8
Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiaestrains: current state and perspectives. Applied Microbiology and Biotechnology, 2009, 84(1): 37–53

DOI

9
Kabel M A, Kortenoeven L, Schols H A, Voragen A G J. In vitro fermentability of differently substituted xylo-oligosaccharides. Journal of Agricultural and Food Chemistry, 2002, 50(21): 6205–6210

DOI

10
Zhao Z, Egashira Y, Sanada H. Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5534–5539

DOI

11
Bruzzese E, Volpicelli M, Squeglia V, Bruzzese D, Salvini F, Bisceglia M, Lionetti P, Cinquetti M, Lacono G, Amarri S, Guarino A. A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: An observational study. Clinical Nutrition (Edinburgh, Lothian), 2009, 28(2): 156–161

DOI

12
Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic baiomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713–3729

13
Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestilibity of lignocellulosic biomass. Bioresource Technology, 2009, 100(1): 10–18

DOI

14
Sassner P, Martensson C G, Galbe M, Zacchi G. Steam pretreatment of H2SO4-impregnated Salixfor the production of bioethanol. Bioresource Technology, 2008, 99(1): 137–145

DOI

15
Lee S H, Doherty T V, Linhardt R J, Dordick J S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 2009, 102(5): 1368–1376

DOI

16
Samuel R, Pu Y, Raman B, Ragauskas A J. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 2009, 162(1): 62–74

DOI

17
Geddes C C, Peterson J J, Roslander C, Zacchi G, Mullinnix M T, Shanmugam K T, Ingram L O. Optimizing the saccharification of sugar cone bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource Technology, 2010, 101(6): 1851–1857

DOI

18
Gupta R, Lee Y Y. Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 2010, 101(21): 8185–8191

DOI

19
Wang W T, Ledonne N C Jr, Ackerman B, Sweeley C C. Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Analytical Biochemistry, 1984, 141(2): 366–381

DOI

20
Yasuno S, Kokubo K, Kamei M. New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Bioscience, Biotechnology, and Biochemistry, 1999, 63(8): 1353–1359

DOI

21
Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3): 426–428

DOI

22
Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035–4042

DOI

23
Park J Y, Shiroma R, Al-Haq M I, Zhang Y, Ike M, Arai-Sanoh Y, Ida A, Kondo M, Tokuyasu K. A novel lime pretreatment for subsequent bioethanol production from rice straw-calcium capturing by carbonation (CaCCO) process. Bioresource Technology, 2010, 101(17): 6805–6811

DOI

24
Kumagai Y, Usuki H, Yamamoto Y, Yamasato A, Arima J, Mukaihara T, Hatanaka T. Characterization of calcium ion sensitive region for β-mannanase from Streptomyces thermolilacinus. Biochimica et Biophysica Acta, 2011, 1814(9): 1127–1133

DOI

25
Biely P, Mackenzie C R, Puls J, Schneider H. Cooporativity of esterases and xylanases in the enzymatic degradation of acetylxylan. Nature Biotechnology, 1986, 4(8): 731–733

DOI

26
Johnson K G, Harrison B A, Schneider H, MacKenzie C R, Fontana J D. Xylan-hydrolysing enzymes from Streptomyces spp. Enzyme and Microbial Technology, 1988, 10(7): 403–409

DOI

27
Clarke J H, Davidson K, Rixon J E, Halstead J R, Fransen M P, Gilbert H J, Hazlewood G P. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Applied Microbiology and Biotechnology, 2000, 53(6): 661–667

DOI

28
Janardhana V, Broadway M M, Bruce M, Lowenthal J W, Geier M S, Hughes R J, Bean A G D. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. Journal of Nutrition, 2009, 139(7): 1404–1409

DOI

29
Chee S H, Iji P A, Choct M, Mikkelsen L L, Kocher A. Characterisation and response of intestinal microflora and mucins to manno-oligosaccharide and antibiotic supplementation in broiler chickens. British Poultry Science, 2010, 51(3): 368–380

DOI

30
Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. β-1–4 Mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Veterinary Immunology and Immunopathology, 2011, 139(2–4): 289–295

DOI

31
Sanz M L, Gibson G R, Rastall R A. Influence of disaccharide structure on prebiotic selectivity in Vitro. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5192–5199

DOI

Outlines

/