RESEARCH ARTICLE

Evolutionary engineering of Phaffia rhodozyma for astaxanthin-overproducing strain

  • Jixian GONG , 1,2 ,
  • Nan DUAN 2 ,
  • Xueming ZHAO 2
Expand
  • 1. School of Textiles, Tianjin Polytechnic University, Tianjin 300160, China
  • 2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 26 Sep 2011

Accepted date: 12 Jan 2012

Published date: 05 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Evolutionary engineering is a novel whole-genome wide engineering strategy inspired by natural evolution for strain improvement. Astaxanthin has been widely used in cosmetics, pharmaceutical and health care food due to its capability of quenching active oxygen. Strain improvement of Phaffia rhodozyma, one of the main sources for natural astaxanthin, is of commercial interest for astaxanthin production. In this study a selection procedure was developed for adaptive evolution of P. rhodozyma strains under endogenetic selective pressure induced by additive in environmental niches. Six agents, which can induce active oxygen in cells, were added to the culture medium respectively to produce selective pressure in process of evolution. The initial strain, P. rhodozyma AS2-1557, was mutagenized to acquire the initial strain population, which was then cultivated for 550 h at selective pressure and the culture was transferred every 48h. Finally, six evolved strains were selected after 150 generations of evolution. The evolved strains produced up to 48.2% more astaxanthin than the initial strain. Our procedure may provide a promising alternative for improvement of high-production strain.

Cite this article

Jixian GONG , Nan DUAN , Xueming ZHAO . Evolutionary engineering of Phaffia rhodozyma for astaxanthin-overproducing strain[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(2) : 174 -178 . DOI: 10.1007/s11705-012-1276-3

Acknowledgments

This work was supported by the National Basic Research Program of China (973) (Grant No. 2007CB707802), and the National Natural Science Foundation of China (Grant Nos. 20806055, 20875068).
1
Selifonova O, Valle F, Schellenberger V. Rapid evolution of novel traits in microorganisms. Applied and Environmental Microbiology, 2001, 67(8): 3645-3649

DOI

2
Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology, 2003, 69(4): 1990-1998

DOI

3
Steiner P, Sauer U. Long-term continuous evolution of acetate resistant Acetobacter aceti. Biotechnology and Bioengineering, 2003, 84(1): 40-44

DOI

4
van Maris A J A, Geertman J M A, Vermeulen A, Groothuizen M K, Winkler A A, Piper M D W, van Dijken J P, Pronk J T. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Applied and Environmental Microbiology, 2004, 70(1): 159-166

DOI

5
Cakar Z P, Seker U O S, Tamerler C, Sonderegger M, Sauer U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Research, 2005, 5(6-7): 569-578

DOI

6
Kuyper M, Toirkens M, Diderich J, Winkler A, Vandijken J, Pronk J. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Research, 2005, 5: 925-934

DOI

7
Wisselink H W, Toirkens M J, del Rosario Franco Berriel M, Winkler A A, van Dijken J P, Pronk J T, van Maris A J A. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Applied and Environmental Microbiology, 2007, 73(15): 4881-4891

DOI

8
Guimaraes P M R, Francois J, Parrou J L, Teixeira J A, Domingues L. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Applied and Environmental Microbiology, 2008, 74(6): 1748-1756

DOI

9
Jantama K, Haupt M J, Svoronos S A, Zhang X, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153

DOI

10
Meijnen J P, de Winde J H, Ruijssenaars H J. Engineering pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Applied and Environmental Microbiology, 2008, 74(16): 5031-5037

DOI

11
Cakar Z P, Alkım C, Turanlı B, Tokman N, Akman S, Sarıkaya M, Tamerler C, Benbadis L, François J M. Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. Journal of Biotechnology, 2009, 143(2): 130-138

DOI

12
Gilbert A, Sangurdekar D P, Srienc F. Rapid strain improvement through optimized evolution in the cytostat. Biotechnology and Bioengineering, 2009, 103(3): 500-512

DOI

13
Wisselink H W, Toirkens M J, Wu Q, Pronk J T, Maris A JA. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Applied and Environmental Microbiology, 2009, 75(4): 907-914

DOI

Outlines

/