REVIEW ARTICLE

Nano-confined ammonia borane for chemical hydrogen storage

  • M. A. WAHAB 1 ,
  • Huijun ZHAO 2 ,
  • X. D. YAO , 1,3
Expand
  • 1. ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Engineering and Nanotechnology, the University of Queensland, St Lucia 4072, Australia
  • 2. Centre for Clean Energy and Environment, Griffith University, Gold Coast 4222, Australia
  • 3. Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia

Received date: 04 Oct 2011

Accepted date: 10 Dec 2011

Published date: 05 Mar 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

There is a great demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. In this regard, ammonia borane (NH3BH3, AB) containing 19.6 wt-% hydrogen has been considered as a promising material for hydrogen storage applications to realize the “hydrogen economy”, but with limits from slow kinetics of hydrogen release and by-product of trace gases such as ammonia and borazine. In this review, we introduce the recent research on AB, regarding to the nanoconfinement effect on improving the kinetics at a relatively low temperature and the prevention/reduction of undesirable gas formation.

Cite this article

M. A. WAHAB , Huijun ZHAO , X. D. YAO . Nano-confined ammonia borane for chemical hydrogen storage[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(1) : 27 -33 . DOI: 10.1007/s11705-011-1171-3

1
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353-358

2
Baitalow F, Wolfa G, Grolier J P E, Danc F, Randzio S L. Thermal decomposition of ammonia-borane under pressures up to 600 bar. Thermochimica Acta, 2006, 445(2): 121-125

3
Klooster W T, Koetzle T F, Siegbahn P E M, Richardson T B, Crabtree R H. Study of the N-H···H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. Journal of the American Chemical Society, 1999, 121(27): 6337-6343

4
Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N, Xu Q. Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy, 2009, 34(5): 2303-2311

5
Smythe N C, Gordon J C. Ammonia borane as a hydrogen carrier: dehydrogenation and regeneration. European Journal of Inorganic Chemistry, 2010, 2010(4): 509-521

6
Rassat S D, Aardahl C L, Autrey T, Smith R S. Thermal stability of ammonia borane: a case study for exothermic hydrogen storage materials. Energy & Fuels, 2010, 24(4): 2596-2606

7
Shore S G, Parry R W. The crystalline compound ammonia-borane, NH3BH3. Journal of the American Chemical Society, 1955, 77(22): 6084-6085

8
Shore S G, Parry R W. Chemical evidence for the structure of the “diammoniate of diborane”. II. The preparation of ammonia-borane. Journal of the American Chemical Society, 1958, 80(1): 8-12

9
Stephens F H, Pons V, Tom Baker R. Ammonia-borane: the hydrogen source par excellence? Dalton Transactions, 2007, (25): 2613-2626

10
Staubitz A, Robertson A P M, Manners I. Ammonia-borane and related compounds as dihydrogen sources. Chemical Reviews, 2010, 110(7): 4079-4124

11
Hamilton C W, Baker R T, Staubitz A, Manners I. B-N compounds for chemical hydrogen storage. Chemical Society Reviews, 2009, 38(1): 279-293

12
Heldebrant D J, Karkamkar A, Linehan J C, Autrey T. Synthesis of ammonia borane for hydrogen storage applications. Energy & Environmental Science, 2008, 1(1): 156-160

13
Karkamkar A, Aardahl C, Autrey T. Advanced applications of engineered nanomaterials. Materials Matters, 2007, 2(2): 10-15

14
Baitalow F, Baumann J, Wolf G, Jaenicke-Röβler K, Leitner G. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta, 2002, 391(1-2): 159-168

15
Wolf G, Baumann J, Baitalow F, Hoffmann F P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochimica Acta, 2000, 343(1-2): 19-25

16
Wolf G, van Miltenburg J C, Wolf U. Thermochemical investigations on borazane (BH3–NH3) in the temperature range from 10 to 289 K. Thermochimica Acta, 1998, 317(2): 111-116

17
Baumann J, Baitalow F, Wolf G. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochimica Acta, 2005, 430(1-2): 9-14

18
Sutton A D, Burrell A K, Dixon D A, Garner E B III, Gordon J C, Nakagawa T, Ott K C, Robinson J P, Vasiliu M. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science, 2011, 331(6023): 1426-1429

19
Marder T B. Will we soon be fueling our automobiles with ammonia-borane? Angewandte Chemie International Edition, 2007, 46(43): 8116-8118

20
Demirci U B, Miele P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy & Environmental Science, 2009, 2(6): 627-637

21
Langmi H W, McGrady G S. Non-hydride systems of the main group elements as hydrogen storage materials. Coordination Chemistry Reviews, 2007, 251(7-8): 925-935

22
Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy & Environmental Science, 2008, 1: 479-483

23
Orimo S, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex hydrides for hydrogen storage. Chemical Reviews, 2007, 107(10): 4111-4132

24
Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials, 2008, 7(2): 138-141

25
Gutowska A, Li L, Shin Y, Wang C M, Li X S, Linehan J C, Smith R S, Kay B D, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angewandte Chemie International Edition, 2005, 44(23): 3578-3582

26
Yao X, Wu C, Du A, Zou J, Zhu Z, Wang P, Cheng H, Smith S, Lu G. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. Journal of the American Chemical Society, 2007, 129(50): 15650-15654

27
Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith S C, Wang P, Cheng H M, Frost R L, Lu G Q(Max). Lithium-catalyzed dehydrogenation of ammonia borane with mesoporous carbon framework for chemical hydrogen storage. Advanced Functional Materials, 2009, 19(2): 265-271

28
Zhang D L, Cantor B. The effect of dopants on the heterogeneous nucleation of solidification of Cd and Pb particles embedded in an Al matrix. Acta Metallurgica et Materialia, 1992, 40(11): 2951-2960

29
Jin S A, Lee Y S, Shim J H, Cho Y W. Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites. Journal of Physical Chemistry C, 2008, 112(25): 9520-9524

30
Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M. Effects of confinement on freezing and melting. Journal of Physics Condensed Matter, 2006, 18(6): R15-R68

31
Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Marco B N, Malgorzata S B. Adsorption and catalysis: the effect of confinement on chemical reactions. Applied Surface Science, 2005, 252(3): 766-777

32
Mayo M J, Suresh A, Porter W D. Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Review Advanced Materials Science, 2003, 5: 100-109

33
Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chemical Reviews, 2004, 104(3): 1283-1316

34
Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. Journal of Physical Chemistry B, 2007, 111(26): 7469-7472

35
Clark T J, Russell C A, Manners I. Homogeneous, titanocene-catalyzed dehydrocoupling of amine-borane adducts. Journal of the American Chemical Society, 2006, 128(30): 9582-9583

36
Bluhm M E, Bradley M G, Butterick R 3rd, Kusari U, Sneddon L G. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. Journal of the American Chemical Society, 2006, 128(24): 7748-7749

37
Diyabalanage H V K, Shrestha R P, Semelsberger T A, Scott B L, Bowden M E, Davis B L, Burrell A K. Calcium amidotrihydroborate: a hydrogen storage material. Angewandte Chemie International Edition, 2007, 46(47): 8995-8997

38
Chen Y S, Fulton J L, Linehan J C, Autrey T. In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. Journal of the American Chemical Society, 2005, 127(10): 3254-3255

39
Denney M C, Pons V, Hebden T J, Heinekey D M, Goldberg K I. Efficient catalysis of ammonia borane dehydrogenation. Journal of the American Chemical Society, 2006, 128(37): 12048-12049

40
Blaquiere N, Diallo-Garcia S, Gorelsky S I, Black D A, Fagnou K. Ruthenium-catalyzed dehydrogenation of ammonia boranes. Journal of the American Chemical Society, 2008, 130(43): 14034-14035

41
Lin Y, Mao W L, Mao H K. Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8113-8116

42
Li Z, Zhu G, Lu G, Qiu S, Yao X. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. Journal of the American Chemical Society, 2010, 132(5): 1490-1491

43
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127-1129

44
de Jongh P E, Adelhelm P. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem, 2010, 3(12): 1332-1348

45
Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008, 37(1): 191-214

46
Noro S I, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angewandte Chemie International Edition, 2000, 39(12): 2081-2084

47
Sun W, Li S, Mao J, Guo Z, Liu H, Dou S, Yu X. Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Transactions (Cambridge, England), 2011, 40(21): 5673-5676

48
Tedds S, Walton A, Broomb D P, Book D. Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discussions, 2011, 151: 75-94

49
Juan-Juan J, Marco-Lozar J P, Suárez-Garcia F, Cazorla-Amorós D, Linares-Solano A. A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon, 2010, 48(10): 2906-2909

Outlines

/