Nano-confined ammonia borane for chemical hydrogen storage

M. A. WAHAB, Huijun ZHAO, X. D. YAO

PDF(362 KB)
PDF(362 KB)
Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 27-33. DOI: 10.1007/s11705-011-1171-3
REVIEW ARTICLE
REVIEW ARTICLE

Nano-confined ammonia borane for chemical hydrogen storage

Author information +
History +

Abstract

There is a great demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. In this regard, ammonia borane (NH3BH3, AB) containing 19.6 wt-% hydrogen has been considered as a promising material for hydrogen storage applications to realize the “hydrogen economy”, but with limits from slow kinetics of hydrogen release and by-product of trace gases such as ammonia and borazine. In this review, we introduce the recent research on AB, regarding to the nanoconfinement effect on improving the kinetics at a relatively low temperature and the prevention/reduction of undesirable gas formation.

Keywords

ammonia borane / hydrogen storage

Cite this article

Download citation ▾
M. A. WAHAB, Huijun ZHAO, X. D. YAO. Nano-confined ammonia borane for chemical hydrogen storage. Front Chem Sci Eng, 2012, 6(1): 27‒33 https://doi.org/10.1007/s11705-011-1171-3

References

[1]
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353-358
[2]
Baitalow F, Wolfa G, Grolier J P E, Danc F, Randzio S L. Thermal decomposition of ammonia-borane under pressures up to 600 bar. Thermochimica Acta, 2006, 445(2): 121-125
[3]
Klooster W T, Koetzle T F, Siegbahn P E M, Richardson T B, Crabtree R H. Study of the N-H···H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. Journal of the American Chemical Society, 1999, 121(27): 6337-6343
[4]
Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N, Xu Q. Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy, 2009, 34(5): 2303-2311
[5]
Smythe N C, Gordon J C. Ammonia borane as a hydrogen carrier: dehydrogenation and regeneration. European Journal of Inorganic Chemistry, 2010, 2010(4): 509-521
[6]
Rassat S D, Aardahl C L, Autrey T, Smith R S. Thermal stability of ammonia borane: a case study for exothermic hydrogen storage materials. Energy & Fuels, 2010, 24(4): 2596-2606
[7]
Shore S G, Parry R W. The crystalline compound ammonia-borane, NH3BH3. Journal of the American Chemical Society, 1955, 77(22): 6084-6085
[8]
Shore S G, Parry R W. Chemical evidence for the structure of the “diammoniate of diborane”. II. The preparation of ammonia-borane. Journal of the American Chemical Society, 1958, 80(1): 8-12
[9]
Stephens F H, Pons V, Tom Baker R. Ammonia-borane: the hydrogen source par excellence? Dalton Transactions, 2007, (25): 2613-2626
[10]
Staubitz A, Robertson A P M, Manners I. Ammonia-borane and related compounds as dihydrogen sources. Chemical Reviews, 2010, 110(7): 4079-4124
[11]
Hamilton C W, Baker R T, Staubitz A, Manners I. B-N compounds for chemical hydrogen storage. Chemical Society Reviews, 2009, 38(1): 279-293
[12]
Heldebrant D J, Karkamkar A, Linehan J C, Autrey T. Synthesis of ammonia borane for hydrogen storage applications. Energy & Environmental Science, 2008, 1(1): 156-160
[13]
Karkamkar A, Aardahl C, Autrey T. Advanced applications of engineered nanomaterials. Materials Matters, 2007, 2(2): 10-15
[14]
Baitalow F, Baumann J, Wolf G, Jaenicke-Röβler K, Leitner G. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta, 2002, 391(1-2): 159-168
[15]
Wolf G, Baumann J, Baitalow F, Hoffmann F P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochimica Acta, 2000, 343(1-2): 19-25
[16]
Wolf G, van Miltenburg J C, Wolf U. Thermochemical investigations on borazane (BH3–NH3) in the temperature range from 10 to 289 K. Thermochimica Acta, 1998, 317(2): 111-116
[17]
Baumann J, Baitalow F, Wolf G. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochimica Acta, 2005, 430(1-2): 9-14
[18]
Sutton A D, Burrell A K, Dixon D A, Garner E B III, Gordon J C, Nakagawa T, Ott K C, Robinson J P, Vasiliu M. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science, 2011, 331(6023): 1426-1429
[19]
Marder T B. Will we soon be fueling our automobiles with ammonia-borane? Angewandte Chemie International Edition, 2007, 46(43): 8116-8118
[20]
Demirci U B, Miele P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy & Environmental Science, 2009, 2(6): 627-637
[21]
Langmi H W, McGrady G S. Non-hydride systems of the main group elements as hydrogen storage materials. Coordination Chemistry Reviews, 2007, 251(7-8): 925-935
[22]
Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy & Environmental Science, 2008, 1: 479-483
[23]
Orimo S, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex hydrides for hydrogen storage. Chemical Reviews, 2007, 107(10): 4111-4132
[24]
Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials, 2008, 7(2): 138-141
[25]
Gutowska A, Li L, Shin Y, Wang C M, Li X S, Linehan J C, Smith R S, Kay B D, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angewandte Chemie International Edition, 2005, 44(23): 3578-3582
[26]
Yao X, Wu C, Du A, Zou J, Zhu Z, Wang P, Cheng H, Smith S, Lu G. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. Journal of the American Chemical Society, 2007, 129(50): 15650-15654
[27]
Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith S C, Wang P, Cheng H M, Frost R L, Lu G Q(Max). Lithium-catalyzed dehydrogenation of ammonia borane with mesoporous carbon framework for chemical hydrogen storage. Advanced Functional Materials, 2009, 19(2): 265-271
[28]
Zhang D L, Cantor B. The effect of dopants on the heterogeneous nucleation of solidification of Cd and Pb particles embedded in an Al matrix. Acta Metallurgica et Materialia, 1992, 40(11): 2951-2960
[29]
Jin S A, Lee Y S, Shim J H, Cho Y W. Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites. Journal of Physical Chemistry C, 2008, 112(25): 9520-9524
[30]
Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M. Effects of confinement on freezing and melting. Journal of Physics Condensed Matter, 2006, 18(6): R15-R68
[31]
Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Marco B N, Malgorzata S B. Adsorption and catalysis: the effect of confinement on chemical reactions. Applied Surface Science, 2005, 252(3): 766-777
[32]
Mayo M J, Suresh A, Porter W D. Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Review Advanced Materials Science, 2003, 5: 100-109
[33]
Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chemical Reviews, 2004, 104(3): 1283-1316
[34]
Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. Journal of Physical Chemistry B, 2007, 111(26): 7469-7472
[35]
Clark T J, Russell C A, Manners I. Homogeneous, titanocene-catalyzed dehydrocoupling of amine-borane adducts. Journal of the American Chemical Society, 2006, 128(30): 9582-9583
[36]
Bluhm M E, Bradley M G, Butterick R 3rd, Kusari U, Sneddon L G. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. Journal of the American Chemical Society, 2006, 128(24): 7748-7749
[37]
Diyabalanage H V K, Shrestha R P, Semelsberger T A, Scott B L, Bowden M E, Davis B L, Burrell A K. Calcium amidotrihydroborate: a hydrogen storage material. Angewandte Chemie International Edition, 2007, 46(47): 8995-8997
[38]
Chen Y S, Fulton J L, Linehan J C, Autrey T. In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. Journal of the American Chemical Society, 2005, 127(10): 3254-3255
[39]
Denney M C, Pons V, Hebden T J, Heinekey D M, Goldberg K I. Efficient catalysis of ammonia borane dehydrogenation. Journal of the American Chemical Society, 2006, 128(37): 12048-12049
[40]
Blaquiere N, Diallo-Garcia S, Gorelsky S I, Black D A, Fagnou K. Ruthenium-catalyzed dehydrogenation of ammonia boranes. Journal of the American Chemical Society, 2008, 130(43): 14034-14035
[41]
Lin Y, Mao W L, Mao H K. Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8113-8116
[42]
Li Z, Zhu G, Lu G, Qiu S, Yao X. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. Journal of the American Chemical Society, 2010, 132(5): 1490-1491
[43]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127-1129
[44]
de Jongh P E, Adelhelm P. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem, 2010, 3(12): 1332-1348
[45]
Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008, 37(1): 191-214
[46]
Noro S I, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angewandte Chemie International Edition, 2000, 39(12): 2081-2084
[47]
Sun W, Li S, Mao J, Guo Z, Liu H, Dou S, Yu X. Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Transactions (Cambridge, England), 2011, 40(21): 5673-5676
[48]
Tedds S, Walton A, Broomb D P, Book D. Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discussions, 2011, 151: 75-94
[49]
Juan-Juan J, Marco-Lozar J P, Suárez-Garcia F, Cazorla-Amorós D, Linares-Solano A. A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon, 2010, 48(10): 2906-2909

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(362 KB)

Accesses

Citations

Detail

Sections
Recommended

/