REVIEW ARTICLE

Advancement in materials for energy-saving lighting devices

  • Tak H. KIM ,
  • Wentai WANG ,
  • Qin LI
Expand
  • Department of Chemical Engineering, Curtin University, Perth 6845, Australia; Present address: Environmental Engineering, Griffith University, Brisbane 4111, Australia

Received date: 20 Aug 2011

Accepted date: 18 Nov 2011

Published date: 05 Mar 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.

Cite this article

Tak H. KIM , Wentai WANG , Qin LI . Advancement in materials for energy-saving lighting devices[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(1) : 13 -26 . DOI: 10.1007/s11705-011-1168-y

1
Kramer T. Seeing the Light. Evonik Magazine, 2010, 2: 12-19

2
Khan N, Abas N. Comparative study of energy saving light sources. Renewable & Sustainable Energy Reviews, 2011, 15(1): 296-309

DOI

3
Park J, Lim S. LCD backlights, light sources, and flat fluorescent lamps. Journal of the Society for Information Display, 2007, 15(12): 1109-1114

DOI

4
Lin M, Ho W, Shih F, Chen D, Wu Y. A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control. IEEE Transactions on Industrial Electronics, 1998, 45(2): 249-255

DOI

5
Jacob B. Lamps for improving the energy efficiency of domestic lighting. Lighting Research & Technology, 2009, 41(3): 219-228

DOI

6
Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. International Journal of Energy Research, 2010, 34(13): 1195-1204

DOI

7
Mooney J. Fluorescent Lamps. Transactions of the Kansas Academy of Science, 1951, 54(4): 504-505

DOI

8
Nakamura H. Recent development of white LEDS and solid state lighting. Light & Engineering, 2009, 17(4): 13-17

9
Duagal A, Heller C, Shiang J, Liu J, Lewis L.Solution-processed organic light-emitting diodes for lighting. Journal of display technology, 2007, 3(2): 184-192

10
Kim S O, Lee K H, Kim G Y, Seo J H, Kim Y K, Yoon S S. A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials. Synthetic Metals, 2010, 160(11-12): 1259-1265

DOI

11
Hewitt P C. Electric gas lamps and gas electrical resistance phenomena. Transactions of the American Institute of Electrical Engineers, 1902, XIX: 59-65

DOI

12
Raposo C, Windmöller C C, Durão W A Jr. Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management (New York, N.Y.), 2003, 23(10): 879-886

DOI PMID

13
Timothy BU S. Patent, <patent>2001038264</patent>, 2001-<month>04</month>-<day>12</day>

14
Koo H, Chang C, Cho N, Lee J. Development and application of less-mercury flat fluorescent lamps for backlights and general lighting. Journal of the Society for Information Display, 2008, 16(7): 759-764

DOI

15
Thaler E, Wilson R, Doughty D, Beers W. Measurement of mecury bound in the glass envelope during operation of fluorescent lamps. Journal of the Electrochemical Society, 1995, 142(6): 1968-1970

DOI

16
Chang T C, You S J, Yu B S, Chen C M, Chiu Y C. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Journal of Hazardous Materials, 2009, 162(2-3): 967-972

DOI PMID

17
Della P P. US Patent, <patent>3657589</patent>, 1927-<month>04</month>-<day>18</day>

18
Elenbaas W. Fluorescent lamps. 2nd. London: Macmillan, 1971

19
Lin D, Yan W. Modeling of cold cathode fluorescent lamps (CCFLs) with realistic electrode profile. IEEE Transactions on Power Electronics, 2010, 25(3): 699-709

DOI

20
Alberts I, Barratt D, Ray A. Hollow cathode effect in cold cathode fluorescent lamps: a review. Journal of Display Technology, 2010, 6(2): 52-59

DOI

21
Patent L E E C L. US<patent>2005057143</patent>, 2005-<month>11</month>-<day>08</day>

22
Guangsup Cho, Lee J Y, Lee D H, Kim S B, Song H S, Jehuan Koo, Kim B S, Kang J G, Choi E H, Lee U W, Yang S C, Verboncoeur J P. Glow discharge in the external electrode fluorescent lamp. IEEE Transactions on Plasma Science, 2005, 33(4): 1410-1415

DOI

23
Cho K, Oh W, Moon G, Park M, Lee S. Study on the equivalent model of an external electrode fluorescent lamp based on equivalent resistance and capacitance variation. Journal of Power Electronics, 2007, 7(1): 38-43

24
Lim D S. US Patent, <patent>2006126332</patent>, 2006-<month>06</month>-<day>15</day>

25
Hironori I. Japanese Patent, <patent>2004079270</patent>, 2004-<month>03</month>-<day>11</day>

26
Jinno M, Okamoto M, Takeda M, Motomura H. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode. Journal of Physics. D, Applied Physics, 2007, 40(13): 3889-3895

DOI

27
Hu W, Liu Z, Yang M. Luminescence characteristics of mercury-free flat fluorescent lamp with arc-shape anodes. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2631-2635

DOI

28
Jung J C, Lee J K, Seo I W, Oh B J, Whang K W. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL). Journal of Physics. D, Applied Physics, 2009, 42(12): 125205

DOI

29
Winsor M, Flynn J. 16.1: Uniform discharge hybrid flat fluorescent lamp (HFFL). SID Symposium Digest of Technical Papers, 2007, 38(1): 979-982

30
Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D, Notzold D. Low-pressure mercury-free plasma light sources: experimental and theoretical perspectives. Journal of Physics. D, Applied Physics, 2005, 38(17): 3318-3325

DOI

31
Shur M, Zukauskas A. Solid-state lighting: toward superior illumination. Proceedings of the IEEE, 2005, 93(10): 1691-1703

DOI

32
Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As 1-xP x) junctions. Applied Physics Letters, 1962, 1(4): 82-83

DOI

33
Nakamura S, Senoh N, Iwasa N, Nagahama S. High-brightness ingan blue, green and yellow light-emitting-diodes with quantum-well structures. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 7A 7A): L797-L799

DOI

34
Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997, 102(2-3): 237-248

DOI

35
Li H, Zhang C, Li D, Duan Y. Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence, 2007 122-123: 626-628

36
Lee S Y, Kwon J W, Kim H S, Choi M S, Byun K S. New design and application of high efficiency LED driving system for RGB-LED backlight in LCD pisplay. In: Power Electronics Specialists Conference, 2006, PESC ’06. 37th IEEE, 2006

37
Chiu H, Cheng S. LED backlight driving system for large-scale LCD panels. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2751-2760

DOI

38
Cho H, Kwon O. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2054-2060

DOI

39
Bernanose A. Electroluminescence of organic compounds. British Journal of Applied Physics, 1955, 6(S4): S54-S55

DOI

40
Tang C, Vanslyke S. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915

DOI

41
Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting-diodes based on conjugated polymers. Nature, 1990, 347(6293): 539-541

DOI

42
Mitschke U, Bauerle P. The electroluminescence of organic materials. Journal of Materials Chemistry, 2000, 10(7): 1471-1507

DOI

43
Zhou G, Wong W, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology, C, Photochemistry Reviews, 2010, 11(4): 133-156

DOI

44
Hatwar T K. European Patent, <patent>1492167</patent>, 2004-<month>06</month>-<day>14</day>

45
Kisan H T. US Patent, <patent>2007228938</patent>, 2007-<month>10</month>-<day>04</day>

46
Lee Y, Ju B, Jeon W, Kwon J, Park O, Yu J, Chin B D. Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures. Synthetic Metals, 2009, 159(3-4): 325-330

DOI

47
Shi J. US Patent, <patent>5935721</patent>, 1999-<month>08</month>-<day>10</day>

48
Norimasa Y. European Patent, <patent>2299510</patent>, 2011-<month>03</month>-<day>23</day>

49
Tang C W. US Patent, <patent>4769292</patent>, 1988-<month>09</month>-<day>06</day>

50
Alsalhi M S, Alam J, Dass L A, Raja M. Recent advances in conjugated polymers for light emitting devices. International Journal of Molecular Sciences, 2011, 12(3): 2036-2054

DOI PMID

51
Kim W Y. Recent developments and prospects of organic electroluminescent display technology. Journal of the Korean Physical Society, 1999, 35: S1115-S1119

52
Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brdas J L, Lgdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121-128

DOI

53
Alan J. Heeger N S S, Ebinazar B N. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010

54
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science, 1995, 267(5202): 1332-1334

DOI PMID

55
Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94(24): 243506

DOI

56
Chu H Y, Lee J I, Do L M, Zyung T, Jung B J, Shim H K, Jang J. Organic white light emitting devices with an RGB stacked multilayer structure. Molecular Crystals and Liquid Crystals, 2003, 405(1): 119-125

DOI

57
Ko C W, Tao Y T. Bright white organic light-emitting diode. Applied Physics Letters, 2001, 79(25): 4234-4236

DOI

58
Ping C, Zhang L, Duan Y, Xie W, Zhao Y, Hou J, Liu S, Li B. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal of Physics. D, Applied Physics, 2009, 42(5): 055115

DOI

59
D'Andrade B, Forrest S. White organic light-emitting devices for solid-state lighting. Advanced Materials (Deerfield Beach, Fla.), 2004, 16(18): 1585-1595

DOI

60
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234-238

DOI PMID

61
Su S J. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(21): 4189

62
Tsuboi T. Recent advances in white organic light emitting diodes with a single emissive dopant. Journal of Non-Crystalline Solids, 2010, 356(37-40): 1919-1927

DOI

63
Murray C, Norris D, Bawendi M. Synthesis and characterization of nearly monodisperse CDE (E = S, SE, TE) Semiconductor nanocrystalllites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715

DOI

64
Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354-357

DOI

65
Steigerwald M, Rice C. Organometallic synthesis of manganese telluride-isolation and characterization of [(Et3P)2(CO)3MNTE]2. Journal of the American Chemical Society, 1988, 110(13): 4228-4231

DOI

66
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715

DOI

67
Katari J, Colvin V, Alivisatos A. X-ray photoelectron-spectroscopy of CDSE nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry, 1994, 98(15): 4109-4117

DOI

68
Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials (Deerfield Beach, Fla.), 2000, 12(15): 1102-1105

DOI

69
Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(28): 3076-3080

DOI PMID

70
Li Y, Rizzo A, Mazzeo M, Carbone L, Manna L, Cingolani R, Gigli G. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97(11): 113501

DOI

71
Torriss B, Haché A, Gauvin S. White light-emitting organic device with electroluminescent quantum dots and organic molecules. Organic Electronics, 2009, 10(8): 1454-1458

DOI

72
Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H, Kim H R, Kang S W. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express, 2010, 18(17): 18303-18311

DOI PMID

73
Xuan Y, Pan D, Zhao N, Ji X, Ma D. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology, 2006, 17(19): 4966-4969

DOI

74
Coe S, Woo W K, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800-803

DOI PMID

75
Kim T, Cho K, Lee E, Lee S, Chae J, Kim J, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176-182

DOI

76
Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110(1): 389-458

DOI PMID

77
Zorn M, Bae W K, Kwak J, Lee H, Lee C, Zentel R, Char K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano, 2009, 3(5): 1063-1068

DOI PMID

78
Gopal A, Hoshino K, Kim S, Zhang X, Hoshino K, Kim S, Zhang X. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology, 2009, 20(23): 235201

DOI PMID

79
Caruge J, Halpert J, Wood V, Bulovic V, Bawendi M. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics, 2008, 2(4): 247-250

DOI

80
Kang S, Huh H H, Son K C, Lee C S, Kim K H, Huh C, Kim E T. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-delta thin film. Physica Status Solidi. B, Basic Research, 2009, 246(4): 889-892

DOI

81
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006, 128(24): 7756-7757

DOI PMID

82
Li Q, Ohulchanskyy T, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad P N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. Journal of Physical Chemistry, C, 2010, 114(28): 12062-12068

DOI

83
Yang S T, Wang X, Wang H, Lu F, Luo P G, Cao L, Meziani M J, Liu J H, Liu Y, Chen M, Huang Y, Sun Y P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry, C, 2009, 113(42): 18110-18114

DOI PMID

84
Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308-11309

DOI PMID

85
Wang F, Kreiter M, He B, Pang S, Liu C Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications, 2010, 46(19): 3309-3311

DOI PMID

86
Wang F, Chen Y H, Liu C Y, Ma D G. White light-emitting devices based on carbon dots’ electroluminescence. Chemical Communications, 2011, 47(12): 3502-3504

DOI PMID

Outlines

/