Frontiers of Chemical Science and Engineering >
Advancement in materials for energy-saving lighting devices
Received date: 20 Aug 2011
Accepted date: 18 Nov 2011
Published date: 05 Mar 2012
Copyright
This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.
Tak H. KIM , Wentai WANG , Qin LI . Advancement in materials for energy-saving lighting devices[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(1) : 13 -26 . DOI: 10.1007/s11705-011-1168-y
1 |
Kramer T. Seeing the Light. Evonik Magazine, 2010, 2: 12-19
|
2 |
Khan N, Abas N. Comparative study of energy saving light sources. Renewable & Sustainable Energy Reviews, 2011, 15(1): 296-309
|
3 |
Park J, Lim S. LCD backlights, light sources, and flat fluorescent lamps. Journal of the Society for Information Display, 2007, 15(12): 1109-1114
|
4 |
Lin M, Ho W, Shih F, Chen D, Wu Y. A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control. IEEE Transactions on Industrial Electronics, 1998, 45(2): 249-255
|
5 |
Jacob B. Lamps for improving the energy efficiency of domestic lighting. Lighting Research & Technology, 2009, 41(3): 219-228
|
6 |
Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. International Journal of Energy Research, 2010, 34(13): 1195-1204
|
7 |
Mooney J. Fluorescent Lamps. Transactions of the Kansas Academy of Science, 1951, 54(4): 504-505
|
8 |
Nakamura H. Recent development of white LEDS and solid state lighting. Light & Engineering, 2009, 17(4): 13-17
|
9 |
Duagal A, Heller C, Shiang J, Liu J, Lewis L.Solution-processed organic light-emitting diodes for lighting. Journal of display technology, 2007, 3(2): 184-192
|
10 |
Kim S O, Lee K H, Kim G Y, Seo J H, Kim Y K, Yoon S S. A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials. Synthetic Metals, 2010, 160(11-12): 1259-1265
|
11 |
Hewitt P C. Electric gas lamps and gas electrical resistance phenomena. Transactions of the American Institute of Electrical Engineers, 1902, XIX: 59-65
|
12 |
Raposo C, Windmöller C C, Durão W A Jr. Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management (New York, N.Y.), 2003, 23(10): 879-886
|
13 |
Timothy BU S. Patent, <patent>2001038264</patent>, 2001-<month>04</month>-<day>12</day>
|
14 |
Koo H, Chang C, Cho N, Lee J. Development and application of less-mercury flat fluorescent lamps for backlights and general lighting. Journal of the Society for Information Display, 2008, 16(7): 759-764
|
15 |
Thaler E, Wilson R, Doughty D, Beers W. Measurement of mecury bound in the glass envelope during operation of fluorescent lamps. Journal of the Electrochemical Society, 1995, 142(6): 1968-1970
|
16 |
Chang T C, You S J, Yu B S, Chen C M, Chiu Y C. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Journal of Hazardous Materials, 2009, 162(2-3): 967-972
|
17 |
Della P P. US Patent, <patent>3657589</patent>, 1927-<month>04</month>-<day>18</day>
|
18 |
Elenbaas W. Fluorescent lamps. 2nd. London: Macmillan, 1971
|
19 |
Lin D, Yan W. Modeling of cold cathode fluorescent lamps (CCFLs) with realistic electrode profile. IEEE Transactions on Power Electronics, 2010, 25(3): 699-709
|
20 |
Alberts I, Barratt D, Ray A. Hollow cathode effect in cold cathode fluorescent lamps: a review. Journal of Display Technology, 2010, 6(2): 52-59
|
21 |
Patent L E E C L. US<patent>2005057143</patent>, 2005-<month>11</month>-<day>08</day>
|
22 |
Guangsup Cho, Lee J Y, Lee D H, Kim S B, Song H S, Jehuan Koo, Kim B S, Kang J G, Choi E H, Lee U W, Yang S C, Verboncoeur J P. Glow discharge in the external electrode fluorescent lamp. IEEE Transactions on Plasma Science, 2005, 33(4): 1410-1415
|
23 |
Cho K, Oh W, Moon G, Park M, Lee S. Study on the equivalent model of an external electrode fluorescent lamp based on equivalent resistance and capacitance variation. Journal of Power Electronics, 2007, 7(1): 38-43
|
24 |
Lim D S. US Patent, <patent>2006126332</patent>, 2006-<month>06</month>-<day>15</day>
|
25 |
Hironori I. Japanese Patent, <patent>2004079270</patent>, 2004-<month>03</month>-<day>11</day>
|
26 |
Jinno M, Okamoto M, Takeda M, Motomura H. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode. Journal of Physics. D, Applied Physics, 2007, 40(13): 3889-3895
|
27 |
Hu W, Liu Z, Yang M. Luminescence characteristics of mercury-free flat fluorescent lamp with arc-shape anodes. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2631-2635
|
28 |
Jung J C, Lee J K, Seo I W, Oh B J, Whang K W. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL). Journal of Physics. D, Applied Physics, 2009, 42(12): 125205
|
29 |
Winsor M, Flynn J. 16.1: Uniform discharge hybrid flat fluorescent lamp (HFFL). SID Symposium Digest of Technical Papers, 2007, 38(1): 979-982
|
30 |
Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D, Notzold D. Low-pressure mercury-free plasma light sources: experimental and theoretical perspectives. Journal of Physics. D, Applied Physics, 2005, 38(17): 3318-3325
|
31 |
Shur M, Zukauskas A. Solid-state lighting: toward superior illumination. Proceedings of the IEEE, 2005, 93(10): 1691-1703
|
32 |
Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As 1-xP x) junctions. Applied Physics Letters, 1962, 1(4): 82-83
|
33 |
Nakamura S, Senoh N, Iwasa N, Nagahama S. High-brightness ingan blue, green and yellow light-emitting-diodes with quantum-well structures. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 7A 7A): L797-L799
|
34 |
Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997, 102(2-3): 237-248
|
35 |
Li H, Zhang C, Li D, Duan Y. Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence, 2007 122-123: 626-628
|
36 |
Lee S Y, Kwon J W, Kim H S, Choi M S, Byun K S. New design and application of high efficiency LED driving system for RGB-LED backlight in LCD pisplay. In: Power Electronics Specialists Conference, 2006, PESC ’06. 37th IEEE, 2006
|
37 |
Chiu H, Cheng S. LED backlight driving system for large-scale LCD panels. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2751-2760
|
38 |
Cho H, Kwon O. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2054-2060
|
39 |
Bernanose A. Electroluminescence of organic compounds. British Journal of Applied Physics, 1955, 6(S4): S54-S55
|
40 |
Tang C, Vanslyke S. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915
|
41 |
Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting-diodes based on conjugated polymers. Nature, 1990, 347(6293): 539-541
|
42 |
Mitschke U, Bauerle P. The electroluminescence of organic materials. Journal of Materials Chemistry, 2000, 10(7): 1471-1507
|
43 |
Zhou G, Wong W, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology, C, Photochemistry Reviews, 2010, 11(4): 133-156
|
44 |
Hatwar T K. European Patent, <patent>1492167</patent>, 2004-<month>06</month>-<day>14</day>
|
45 |
Kisan H T. US Patent, <patent>2007228938</patent>, 2007-<month>10</month>-<day>04</day>
|
46 |
Lee Y, Ju B, Jeon W, Kwon J, Park O, Yu J, Chin B D. Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures. Synthetic Metals, 2009, 159(3-4): 325-330
|
47 |
Shi J. US Patent, <patent>5935721</patent>, 1999-<month>08</month>-<day>10</day>
|
48 |
Norimasa Y. European Patent, <patent>2299510</patent>, 2011-<month>03</month>-<day>23</day>
|
49 |
Tang C W. US Patent, <patent>4769292</patent>, 1988-<month>09</month>-<day>06</day>
|
50 |
Alsalhi M S, Alam J, Dass L A, Raja M. Recent advances in conjugated polymers for light emitting devices. International Journal of Molecular Sciences, 2011, 12(3): 2036-2054
|
51 |
Kim W Y. Recent developments and prospects of organic electroluminescent display technology. Journal of the Korean Physical Society, 1999, 35: S1115-S1119
|
52 |
Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brdas J L, Lgdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121-128
|
53 |
Alan J. Heeger N S S, Ebinazar B N. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010
|
54 |
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science, 1995, 267(5202): 1332-1334
|
55 |
Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94(24): 243506
|
56 |
Chu H Y, Lee J I, Do L M, Zyung T, Jung B J, Shim H K, Jang J. Organic white light emitting devices with an RGB stacked multilayer structure. Molecular Crystals and Liquid Crystals, 2003, 405(1): 119-125
|
57 |
Ko C W, Tao Y T. Bright white organic light-emitting diode. Applied Physics Letters, 2001, 79(25): 4234-4236
|
58 |
Ping C, Zhang L, Duan Y, Xie W, Zhao Y, Hou J, Liu S, Li B. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal of Physics. D, Applied Physics, 2009, 42(5): 055115
|
59 |
D'Andrade B, Forrest S. White organic light-emitting devices for solid-state lighting. Advanced Materials (Deerfield Beach, Fla.), 2004, 16(18): 1585-1595
|
60 |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234-238
|
61 |
Su S J. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(21): 4189
|
62 |
Tsuboi T. Recent advances in white organic light emitting diodes with a single emissive dopant. Journal of Non-Crystalline Solids, 2010, 356(37-40): 1919-1927
|
63 |
Murray C, Norris D, Bawendi M. Synthesis and characterization of nearly monodisperse CDE (E = S, SE, TE) Semiconductor nanocrystalllites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
|
64 |
Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354-357
|
65 |
Steigerwald M, Rice C. Organometallic synthesis of manganese telluride-isolation and characterization of [(Et3P)2(CO)3MNTE]2. Journal of the American Chemical Society, 1988, 110(13): 4228-4231
|
66 |
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
|
67 |
Katari J, Colvin V, Alivisatos A. X-ray photoelectron-spectroscopy of CDSE nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry, 1994, 98(15): 4109-4117
|
68 |
Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials (Deerfield Beach, Fla.), 2000, 12(15): 1102-1105
|
69 |
Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(28): 3076-3080
|
70 |
Li Y, Rizzo A, Mazzeo M, Carbone L, Manna L, Cingolani R, Gigli G. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97(11): 113501
|
71 |
Torriss B, Haché A, Gauvin S. White light-emitting organic device with electroluminescent quantum dots and organic molecules. Organic Electronics, 2009, 10(8): 1454-1458
|
72 |
Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H, Kim H R, Kang S W. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express, 2010, 18(17): 18303-18311
|
73 |
Xuan Y, Pan D, Zhao N, Ji X, Ma D. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology, 2006, 17(19): 4966-4969
|
74 |
Coe S, Woo W K, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800-803
|
75 |
Kim T, Cho K, Lee E, Lee S, Chae J, Kim J, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176-182
|
76 |
Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110(1): 389-458
|
77 |
Zorn M, Bae W K, Kwak J, Lee H, Lee C, Zentel R, Char K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano, 2009, 3(5): 1063-1068
|
78 |
Gopal A, Hoshino K, Kim S, Zhang X, Hoshino K, Kim S, Zhang X. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology, 2009, 20(23): 235201
|
79 |
Caruge J, Halpert J, Wood V, Bulovic V, Bawendi M. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics, 2008, 2(4): 247-250
|
80 |
Kang S, Huh H H, Son K C, Lee C S, Kim K H, Huh C, Kim E T. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-delta thin film. Physica Status Solidi. B, Basic Research, 2009, 246(4): 889-892
|
81 |
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006, 128(24): 7756-7757
|
82 |
Li Q, Ohulchanskyy T, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad P N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. Journal of Physical Chemistry, C, 2010, 114(28): 12062-12068
|
83 |
Yang S T, Wang X, Wang H, Lu F, Luo P G, Cao L, Meziani M J, Liu J H, Liu Y, Chen M, Huang Y, Sun Y P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry, C, 2009, 113(42): 18110-18114
|
84 |
Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308-11309
|
85 |
Wang F, Kreiter M, He B, Pang S, Liu C Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications, 2010, 46(19): 3309-3311
|
86 |
Wang F, Chen Y H, Liu C Y, Ma D G. White light-emitting devices based on carbon dots’ electroluminescence. Chemical Communications, 2011, 47(12): 3502-3504
|
/
〈 | 〉 |