Advancement in materials for energy-saving lighting devices
Tak H. KIM, Wentai WANG, Qin LI
Advancement in materials for energy-saving lighting devices
This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.
energy-saving lighting devices / solid state lighting devices
[1] |
Kramer T. Seeing the Light. Evonik Magazine, 2010, 2: 12-19
|
[2] |
Khan N, Abas N. Comparative study of energy saving light sources. Renewable & Sustainable Energy Reviews, 2011, 15(1): 296-309
CrossRef
Google scholar
|
[3] |
Park J, Lim S. LCD backlights, light sources, and flat fluorescent lamps. Journal of the Society for Information Display, 2007, 15(12): 1109-1114
CrossRef
Google scholar
|
[4] |
Lin M, Ho W, Shih F, Chen D, Wu Y. A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control. IEEE Transactions on Industrial Electronics, 1998, 45(2): 249-255
CrossRef
Google scholar
|
[5] |
Jacob B. Lamps for improving the energy efficiency of domestic lighting. Lighting Research & Technology, 2009, 41(3): 219-228
CrossRef
Google scholar
|
[6] |
Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. International Journal of Energy Research, 2010, 34(13): 1195-1204
CrossRef
Google scholar
|
[7] |
Mooney J. Fluorescent Lamps. Transactions of the Kansas Academy of Science, 1951, 54(4): 504-505
CrossRef
Google scholar
|
[8] |
Nakamura H. Recent development of white LEDS and solid state lighting. Light & Engineering, 2009, 17(4): 13-17
|
[9] |
Duagal A, Heller C, Shiang J, Liu J, Lewis L.Solution-processed organic light-emitting diodes for lighting. Journal of display technology, 2007, 3(2): 184-192
|
[10] |
Kim S O, Lee K H, Kim G Y, Seo J H, Kim Y K, Yoon S S. A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials. Synthetic Metals, 2010, 160(11-12): 1259-1265
CrossRef
Google scholar
|
[11] |
Hewitt P C. Electric gas lamps and gas electrical resistance phenomena. Transactions of the American Institute of Electrical Engineers, 1902, XIX: 59-65
CrossRef
Google scholar
|
[12] |
Raposo C, Windmöller C C, Durão W A Jr. Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management (New York, N.Y.), 2003, 23(10): 879-886
CrossRef
Pubmed
Google scholar
|
[13] |
Timothy BU S. Patent, <patent>2001038264</patent>, 2001-<month>04</month>-<day>12</day>
|
[14] |
Koo H, Chang C, Cho N, Lee J. Development and application of less-mercury flat fluorescent lamps for backlights and general lighting. Journal of the Society for Information Display, 2008, 16(7): 759-764
CrossRef
Google scholar
|
[15] |
Thaler E, Wilson R, Doughty D, Beers W. Measurement of mecury bound in the glass envelope during operation of fluorescent lamps. Journal of the Electrochemical Society, 1995, 142(6): 1968-1970
CrossRef
Google scholar
|
[16] |
Chang T C, You S J, Yu B S, Chen C M, Chiu Y C. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Journal of Hazardous Materials, 2009, 162(2-3): 967-972
CrossRef
Pubmed
Google scholar
|
[17] |
Della P P. US Patent, <patent>3657589</patent>, 1927-<month>04</month>-<day>18</day>
|
[18] |
Elenbaas W. Fluorescent lamps. 2nd. London: Macmillan, 1971
|
[19] |
Lin D, Yan W. Modeling of cold cathode fluorescent lamps (CCFLs) with realistic electrode profile. IEEE Transactions on Power Electronics, 2010, 25(3): 699-709
CrossRef
Google scholar
|
[20] |
Alberts I, Barratt D, Ray A. Hollow cathode effect in cold cathode fluorescent lamps: a review. Journal of Display Technology, 2010, 6(2): 52-59
CrossRef
Google scholar
|
[21] |
Patent L E E C L. US<patent>2005057143</patent>, 2005-<month>11</month>-<day>08</day>
|
[22] |
Guangsup Cho, Lee J Y, Lee D H, Kim S B, Song H S, Jehuan Koo, Kim B S, Kang J G, Choi E H, Lee U W, Yang S C, Verboncoeur J P. Glow discharge in the external electrode fluorescent lamp. IEEE Transactions on Plasma Science, 2005, 33(4): 1410-1415
CrossRef
Google scholar
|
[23] |
Cho K, Oh W, Moon G, Park M, Lee S. Study on the equivalent model of an external electrode fluorescent lamp based on equivalent resistance and capacitance variation. Journal of Power Electronics, 2007, 7(1): 38-43
|
[24] |
Lim D S. US Patent, <patent>2006126332</patent>, 2006-<month>06</month>-<day>15</day>
|
[25] |
Hironori I. Japanese Patent, <patent>2004079270</patent>, 2004-<month>03</month>-<day>11</day>
|
[26] |
Jinno M, Okamoto M, Takeda M, Motomura H. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode. Journal of Physics. D, Applied Physics, 2007, 40(13): 3889-3895
CrossRef
Google scholar
|
[27] |
Hu W, Liu Z, Yang M. Luminescence characteristics of mercury-free flat fluorescent lamp with arc-shape anodes. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2631-2635
CrossRef
Google scholar
|
[28] |
Jung J C, Lee J K, Seo I W, Oh B J, Whang K W. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL). Journal of Physics. D, Applied Physics, 2009, 42(12): 125205
CrossRef
Google scholar
|
[29] |
Winsor M, Flynn J. 16.1: Uniform discharge hybrid flat fluorescent lamp (HFFL). SID Symposium Digest of Technical Papers, 2007, 38(1): 979-982
|
[30] |
Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D, Notzold D. Low-pressure mercury-free plasma light sources: experimental and theoretical perspectives. Journal of Physics. D, Applied Physics, 2005, 38(17): 3318-3325
CrossRef
Google scholar
|
[31] |
Shur M, Zukauskas A. Solid-state lighting: toward superior illumination. Proceedings of the IEEE, 2005, 93(10): 1691-1703
CrossRef
Google scholar
|
[32] |
Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As 1-xP x) junctions. Applied Physics Letters, 1962, 1(4): 82-83
CrossRef
Google scholar
|
[33] |
Nakamura S, Senoh N, Iwasa N, Nagahama S. High-brightness ingan blue, green and yellow light-emitting-diodes with quantum-well structures. Japanese Journal of Applied Physics, 1995, 34(Part 2, No. 7A 7A): L797-L799
CrossRef
Google scholar
|
[34] |
Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997, 102(2-3): 237-248
CrossRef
Google scholar
|
[35] |
Li H, Zhang C, Li D, Duan Y. Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence, 2007 122-123: 626-628
|
[36] |
Lee S Y, Kwon J W, Kim H S, Choi M S, Byun K S. New design and application of high efficiency LED driving system for RGB-LED backlight in LCD pisplay. In: Power Electronics Specialists Conference, 2006, PESC ’06. 37th IEEE, 2006
|
[37] |
Chiu H, Cheng S. LED backlight driving system for large-scale LCD panels. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2751-2760
CrossRef
Google scholar
|
[38] |
Cho H, Kwon O. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2054-2060
CrossRef
Google scholar
|
[39] |
Bernanose A. Electroluminescence of organic compounds. British Journal of Applied Physics, 1955, 6(S4): S54-S55
CrossRef
Google scholar
|
[40] |
Tang C, Vanslyke S. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915
CrossRef
Google scholar
|
[41] |
Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting-diodes based on conjugated polymers. Nature, 1990, 347(6293): 539-541
CrossRef
Google scholar
|
[42] |
Mitschke U, Bauerle P. The electroluminescence of organic materials. Journal of Materials Chemistry, 2000, 10(7): 1471-1507
CrossRef
Google scholar
|
[43] |
Zhou G, Wong W, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology, C, Photochemistry Reviews, 2010, 11(4): 133-156
CrossRef
Google scholar
|
[44] |
Hatwar T K. European Patent, <patent>1492167</patent>, 2004-<month>06</month>-<day>14</day>
|
[45] |
Kisan H T. US Patent, <patent>2007228938</patent>, 2007-<month>10</month>-<day>04</day>
|
[46] |
Lee Y, Ju B, Jeon W, Kwon J, Park O, Yu J, Chin B D. Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures. Synthetic Metals, 2009, 159(3-4): 325-330
CrossRef
Google scholar
|
[47] |
Shi J. US Patent, <patent>5935721</patent>, 1999-<month>08</month>-<day>10</day>
|
[48] |
Norimasa Y. European Patent, <patent>2299510</patent>, 2011-<month>03</month>-<day>23</day>
|
[49] |
Tang C W. US Patent, <patent>4769292</patent>, 1988-<month>09</month>-<day>06</day>
|
[50] |
Alsalhi M S, Alam J, Dass L A, Raja M. Recent advances in conjugated polymers for light emitting devices. International Journal of Molecular Sciences, 2011, 12(3): 2036-2054
CrossRef
Pubmed
Google scholar
|
[51] |
Kim W Y. Recent developments and prospects of organic electroluminescent display technology. Journal of the Korean Physical Society, 1999, 35: S1115-S1119
|
[52] |
Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brdas J L, Lgdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121-128
CrossRef
Google scholar
|
[53] |
Alan J. Heeger N S S, Ebinazar B N. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010
|
[54] |
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science, 1995, 267(5202): 1332-1334
CrossRef
Pubmed
Google scholar
|
[55] |
Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94(24): 243506
CrossRef
Google scholar
|
[56] |
Chu H Y, Lee J I, Do L M, Zyung T, Jung B J, Shim H K, Jang J. Organic white light emitting devices with an RGB stacked multilayer structure. Molecular Crystals and Liquid Crystals, 2003, 405(1): 119-125
CrossRef
Google scholar
|
[57] |
Ko C W, Tao Y T. Bright white organic light-emitting diode. Applied Physics Letters, 2001, 79(25): 4234-4236
CrossRef
Google scholar
|
[58] |
Ping C, Zhang L, Duan Y, Xie W, Zhao Y, Hou J, Liu S, Li B. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal of Physics. D, Applied Physics, 2009, 42(5): 055115
CrossRef
Google scholar
|
[59] |
D'Andrade B, Forrest S. White organic light-emitting devices for solid-state lighting. Advanced Materials (Deerfield Beach, Fla.), 2004, 16(18): 1585-1595
CrossRef
Google scholar
|
[60] |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234-238
CrossRef
Pubmed
Google scholar
|
[61] |
Su S J. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(21): 4189
|
[62] |
Tsuboi T. Recent advances in white organic light emitting diodes with a single emissive dopant. Journal of Non-Crystalline Solids, 2010, 356(37-40): 1919-1927
CrossRef
Google scholar
|
[63] |
Murray C, Norris D, Bawendi M. Synthesis and characterization of nearly monodisperse CDE (E = S, SE, TE) Semiconductor nanocrystalllites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
CrossRef
Google scholar
|
[64] |
Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354-357
CrossRef
Google scholar
|
[65] |
Steigerwald M, Rice C. Organometallic synthesis of manganese telluride-isolation and characterization of [(Et3P)2(CO)3MNTE]2. Journal of the American Chemical Society, 1988, 110(13): 4228-4231
CrossRef
Google scholar
|
[66] |
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715
CrossRef
Google scholar
|
[67] |
Katari J, Colvin V, Alivisatos A. X-ray photoelectron-spectroscopy of CDSE nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry, 1994, 98(15): 4109-4117
CrossRef
Google scholar
|
[68] |
Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials (Deerfield Beach, Fla.), 2000, 12(15): 1102-1105
CrossRef
Google scholar
|
[69] |
Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(28): 3076-3080
CrossRef
Pubmed
Google scholar
|
[70] |
Li Y, Rizzo A, Mazzeo M, Carbone L, Manna L, Cingolani R, Gigli G. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics, 2005, 97(11): 113501
CrossRef
Google scholar
|
[71] |
Torriss B, Haché A, Gauvin S. White light-emitting organic device with electroluminescent quantum dots and organic molecules. Organic Electronics, 2009, 10(8): 1454-1458
CrossRef
Google scholar
|
[72] |
Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H, Kim H R, Kang S W. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express, 2010, 18(17): 18303-18311
CrossRef
Pubmed
Google scholar
|
[73] |
Xuan Y, Pan D, Zhao N, Ji X, Ma D. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology, 2006, 17(19): 4966-4969
CrossRef
Google scholar
|
[74] |
Coe S, Woo W K, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800-803
CrossRef
Pubmed
Google scholar
|
[75] |
Kim T, Cho K, Lee E, Lee S, Chae J, Kim J, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176-182
CrossRef
Google scholar
|
[76] |
Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110(1): 389-458
CrossRef
Pubmed
Google scholar
|
[77] |
Zorn M, Bae W K, Kwak J, Lee H, Lee C, Zentel R, Char K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano, 2009, 3(5): 1063-1068
CrossRef
Pubmed
Google scholar
|
[78] |
Gopal A, Hoshino K, Kim S, Zhang X, Hoshino K, Kim S, Zhang X. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology, 2009, 20(23): 235201
CrossRef
Pubmed
Google scholar
|
[79] |
Caruge J, Halpert J, Wood V, Bulovic V, Bawendi M. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics, 2008, 2(4): 247-250
CrossRef
Google scholar
|
[80] |
Kang S, Huh H H, Son K C, Lee C S, Kim K H, Huh C, Kim E T. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-delta thin film. Physica Status Solidi. B, Basic Research, 2009, 246(4): 889-892
CrossRef
Google scholar
|
[81] |
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006, 128(24): 7756-7757
CrossRef
Pubmed
Google scholar
|
[82] |
Li Q, Ohulchanskyy T, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad P N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. Journal of Physical Chemistry, C, 2010, 114(28): 12062-12068
CrossRef
Google scholar
|
[83] |
Yang S T, Wang X, Wang H, Lu F, Luo P G, Cao L, Meziani M J, Liu J H, Liu Y, Chen M, Huang Y, Sun Y P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry, C, 2009, 113(42): 18110-18114
CrossRef
Pubmed
Google scholar
|
[84] |
Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308-11309
CrossRef
Pubmed
Google scholar
|
[85] |
Wang F, Kreiter M, He B, Pang S, Liu C Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications, 2010, 46(19): 3309-3311
CrossRef
Pubmed
Google scholar
|
[86] |
Wang F, Chen Y H, Liu C Y, Ma D G. White light-emitting devices based on carbon dots’ electroluminescence. Chemical Communications, 2011, 47(12): 3502-3504
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |