RESEARCH ARTICLE

Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

  • Ping Zhang 1 ,
  • Yi-Han Li 1 ,
  • Li Chen 2 ,
  • Mao-Jie Zhang , 1 ,
  • Yang Ren 1 ,
  • Yan-Xu Chen 1 ,
  • Zhi Hu 1 ,
  • Qi Wang 1 ,
  • Wei Wang , 2 ,
  • Liang-Yin Chu 2
Expand
  • 1. College of Engineering, Sichuan Normal University, Chengdu 610101, China
  • 2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China

Received date: 06 Nov 2021

Accepted date: 15 Dec 2021

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press

Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

Cite this article

Ping Zhang , Yi-Han Li , Li Chen , Mao-Jie Zhang , Yang Ren , Yan-Xu Chen , Zhi Hu , Qi Wang , Wei Wang , Liang-Yin Chu . Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(6) : 939 -949 . DOI: 10.1007/s11705-022-2152-4

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21922809, 22108186, and 21991101), and the Sichuan Science and Technology Program (Grant No. 2019YJ0528).
1
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7( 9): 2831– 2867

DOI

2
Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2( 9): 5420– 5429

DOI

3
Liu Y, Wang C, Veder J P, Saunders M, Tade M, Wang S, Shao Z. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530 : 556– 566

DOI

4
Li J, Zhou L, Song Y, Yu X, Li X, Liu Y, Zhang Z, Yuan Y, Yan S, Zhang J. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270 : 118340

DOI

5
Zeng L, Guo X, He C, Duan C. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6( 11): 7935– 7947

DOI

6
Jiao L, Wang Y, Jiang H L, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30( 37): e1703663

DOI

7
Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46( 1): 126– 157

DOI

8
Chen L Y, Tsumori N, Xu Q. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63( 11): 1601– 1607

DOI

9
Zhang C, Ai L, Jiang J. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 6): 1– 8

DOI

10
Zhao H, Chen Y, Peng Q, Wang Q, Zhao G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203 : 127– 137

DOI

11
Tanaka S, Miyashita R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2( 10): 6437– 6445

DOI

12
Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12( 31): 35120– 35131

DOI

13
Mosleh S, Rahimi M R. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35 : 449– 457

DOI

14
Xue Y, Wang P, Wang C, Ao Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203 : 497– 505

DOI

15
Li G P, Zhang K, Li C B, Gao R C, Cheng Y, Hou L, Wang Y Y. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245 : 753– 759

DOI

16
Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2( 3): 1500006

DOI

17
Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low Z X, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8( 14): 9080– 9087

DOI

18
Huang L, He M, Chen B, Hu B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199 : 435– 444

DOI

19
Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7( 25): 13758– 13767

DOI

20
Su Y Y, Zhang M J, Wang W, Deng C F, Peng J, Liu Z, Faraj Y, Ju X J, Xie R, Chu L Y. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1590– 1600

DOI

21
Ataei-Germi T, Nematollahzadeh A. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470 : 172– 182

DOI

22
Zhang M J, Chen T, Zhang P, Li Z L, Chen L, Su Y Y, Qiu L D, Peng G, Wang W, Chu L Y. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16( 10): 2581– 2593

DOI

23
Yu C, Zhu W, He Z, Xu J, Fang F, Gao Z, Ding W, Wang Y, Wang J, Wang J, Huang A, Cheng A, Wei Y, Ai S. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615 : 126255

DOI

24
Yu D, Li L, Wu M, Crittenden J C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251 : 66– 75

DOI

25
Zhang Y, Zhou J, Chen X, Wang L, Cai W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369 : 745– 757

DOI

26
Xie A, Cui J, Yang J, Chen Y, Lang J, Li C, Yan Y, Dai J. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264 : 118548

DOI

27
Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43( 9): 3792– 3798

DOI

28
Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9( 1): 51

DOI

29
Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B T, Hao Q, Lu S. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259 : 118064

DOI

30
Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, Wu M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221 : 119– 128

DOI

31
Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46( 47): 8970– 8974

DOI

32
Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52( 31): 8084– 8087

DOI

33
Li W, Zhang L Y, Ge X H, Xu B Y, Zhang W X, Qu L L, Choi C H, Xu J H, Zhang A, Lee H M, Weitz D A. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47( 15): 5646– 5683

DOI

34
Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11( 9): 1587– 1592

DOI

35
Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231 : 116242

DOI

36
Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47( 2): 373– 384

DOI

37
Wang B J, Prinsen P, Wang H Z, Bai Z S, Wang H L, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46( 3): 855– 914

DOI

38
Gao Y, Li S, Li Y, Yao L, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202 : 165– 174

DOI

39
Tang J, Wang J. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52( 9): 5367– 5377

DOI

40
Yuan R, Qiu J, Yue C, Shen C, Li D, Zhu C, Liu F, Li A. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401 : 126020

DOI

41
Hu X, Li R, Zhao S, Xing Y. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396 : 1393– 1402

DOI

42
Lian Z, Wei C, Gao B, Yang X, Chan Y, Wang J, Chen G Z, Koh K S, Shi Y, Yan Y, Ren Y, He J, Liu F. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10( 16): 9210– 9225

DOI

Outlines

/