Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu

PDF(6559 KB)
PDF(6559 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 939-949. DOI: 10.1007/s11705-022-2152-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

Author information +
History +

Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

Graphical abstract

Keywords

metal-organic framework / polymer microparticle / nanocatalyst / decontamination / organic contaminant

Cite this article

Download citation ▾
Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Front. Chem. Sci. Eng., 2022, 16(6): 939‒949 https://doi.org/10.1007/s11705-022-2152-4

References

[1]
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7( 9): 2831– 2867
CrossRef Google scholar
[2]
Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2( 9): 5420– 5429
CrossRef Google scholar
[3]
Liu Y, Wang C, Veder J P, Saunders M, Tade M, Wang S, Shao Z. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530 : 556– 566
CrossRef Google scholar
[4]
Li J, Zhou L, Song Y, Yu X, Li X, Liu Y, Zhang Z, Yuan Y, Yan S, Zhang J. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270 : 118340
CrossRef Google scholar
[5]
Zeng L, Guo X, He C, Duan C. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6( 11): 7935– 7947
CrossRef Google scholar
[6]
Jiao L, Wang Y, Jiang H L, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30( 37): e1703663
CrossRef Google scholar
[7]
Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46( 1): 126– 157
CrossRef Google scholar
[8]
Chen L Y, Tsumori N, Xu Q. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63( 11): 1601– 1607
CrossRef Google scholar
[9]
Zhang C, Ai L, Jiang J. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 6): 1– 8
CrossRef Google scholar
[10]
Zhao H, Chen Y, Peng Q, Wang Q, Zhao G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203 : 127– 137
CrossRef Google scholar
[11]
Tanaka S, Miyashita R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2( 10): 6437– 6445
CrossRef Google scholar
[12]
Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12( 31): 35120– 35131
CrossRef Google scholar
[13]
Mosleh S, Rahimi M R. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35 : 449– 457
CrossRef Google scholar
[14]
Xue Y, Wang P, Wang C, Ao Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203 : 497– 505
CrossRef Google scholar
[15]
Li G P, Zhang K, Li C B, Gao R C, Cheng Y, Hou L, Wang Y Y. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245 : 753– 759
CrossRef Google scholar
[16]
Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2( 3): 1500006
CrossRef Google scholar
[17]
Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low Z X, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8( 14): 9080– 9087
CrossRef Google scholar
[18]
Huang L, He M, Chen B, Hu B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199 : 435– 444
CrossRef Google scholar
[19]
Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7( 25): 13758– 13767
CrossRef Google scholar
[20]
Su Y Y, Zhang M J, Wang W, Deng C F, Peng J, Liu Z, Faraj Y, Ju X J, Xie R, Chu L Y. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1590– 1600
CrossRef Google scholar
[21]
Ataei-Germi T, Nematollahzadeh A. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470 : 172– 182
CrossRef Google scholar
[22]
Zhang M J, Chen T, Zhang P, Li Z L, Chen L, Su Y Y, Qiu L D, Peng G, Wang W, Chu L Y. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16( 10): 2581– 2593
CrossRef Google scholar
[23]
Yu C, Zhu W, He Z, Xu J, Fang F, Gao Z, Ding W, Wang Y, Wang J, Wang J, Huang A, Cheng A, Wei Y, Ai S. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615 : 126255
CrossRef Google scholar
[24]
Yu D, Li L, Wu M, Crittenden J C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251 : 66– 75
CrossRef Google scholar
[25]
Zhang Y, Zhou J, Chen X, Wang L, Cai W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369 : 745– 757
CrossRef Google scholar
[26]
Xie A, Cui J, Yang J, Chen Y, Lang J, Li C, Yan Y, Dai J. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264 : 118548
CrossRef Google scholar
[27]
Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43( 9): 3792– 3798
CrossRef Google scholar
[28]
Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9( 1): 51
CrossRef Google scholar
[29]
Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B T, Hao Q, Lu S. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259 : 118064
CrossRef Google scholar
[30]
Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, Wu M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221 : 119– 128
CrossRef Google scholar
[31]
Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46( 47): 8970– 8974
CrossRef Google scholar
[32]
Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52( 31): 8084– 8087
CrossRef Google scholar
[33]
Li W, Zhang L Y, Ge X H, Xu B Y, Zhang W X, Qu L L, Choi C H, Xu J H, Zhang A, Lee H M, Weitz D A. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47( 15): 5646– 5683
CrossRef Google scholar
[34]
Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11( 9): 1587– 1592
CrossRef Google scholar
[35]
Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231 : 116242
CrossRef Google scholar
[36]
Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47( 2): 373– 384
CrossRef Google scholar
[37]
Wang B J, Prinsen P, Wang H Z, Bai Z S, Wang H L, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46( 3): 855– 914
CrossRef Google scholar
[38]
Gao Y, Li S, Li Y, Yao L, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202 : 165– 174
CrossRef Google scholar
[39]
Tang J, Wang J. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52( 9): 5367– 5377
CrossRef Google scholar
[40]
Yuan R, Qiu J, Yue C, Shen C, Li D, Zhu C, Liu F, Li A. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401 : 126020
CrossRef Google scholar
[41]
Hu X, Li R, Zhao S, Xing Y. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396 : 1393– 1402
CrossRef Google scholar
[42]
Lian Z, Wei C, Gao B, Yang X, Chan Y, Wang J, Chen G Z, Koh K S, Shi Y, Yan Y, Ren Y, He J, Liu F. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10( 16): 9210– 9225
CrossRef Google scholar

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21922809, 22108186, and 21991101), and the Sichuan Science and Technology Program (Grant No. 2019YJ0528).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(6559 KB)

Accesses

Citations

Detail

Sections
Recommended

/