Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

Ping Zhang , Yi-Han Li , Li Chen , Mao-Jie Zhang , Yang Ren , Yan-Xu Chen , Zhi Hu , Qi Wang , Wei Wang , Liang-Yin Chu

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 939 -949.

PDF (6559KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 939 -949. DOI: 10.1007/s11705-022-2152-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants

Author information +
History +
PDF (6559KB)

Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

Graphical abstract

Keywords

metal-organic framework / polymer microparticle / nanocatalyst / decontamination / organic contaminant

Cite this article

Download citation ▾
Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Front. Chem. Sci. Eng., 2022, 16(6): 939-949 DOI:10.1007/s11705-022-2152-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7( 9): 2831– 2867

[2]

Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2( 9): 5420– 5429

[3]

Liu Y, Wang C, Veder J P, Saunders M, Tade M, Wang S, Shao Z. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530 : 556– 566

[4]

Li J, Zhou L, Song Y, Yu X, Li X, Liu Y, Zhang Z, Yuan Y, Yan S, Zhang J. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270 : 118340

[5]

Zeng L, Guo X, He C, Duan C. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6( 11): 7935– 7947

[6]

Jiao L, Wang Y, Jiang H L, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30( 37): e1703663

[7]

Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46( 1): 126– 157

[8]

Chen L Y, Tsumori N, Xu Q. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63( 11): 1601– 1607

[9]

Zhang C, Ai L, Jiang J. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 6): 1– 8

[10]

Zhao H, Chen Y, Peng Q, Wang Q, Zhao G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203 : 127– 137

[11]

Tanaka S, Miyashita R. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2( 10): 6437– 6445

[12]

Chen L, Zhang M J, Zhang S Y, Shi L, Yang Y M, Liu Z, Ju X J, Xie R, Wang W, Chu L Y. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12( 31): 35120– 35131

[13]

Mosleh S, Rahimi M R. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35 : 449– 457

[14]

Xue Y, Wang P, Wang C, Ao Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203 : 497– 505

[15]

Li G P, Zhang K, Li C B, Gao R C, Cheng Y, Hou L, Wang Y Y. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245 : 753– 759

[16]

Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2( 3): 1500006

[17]

Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low Z X, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8( 14): 9080– 9087

[18]

Huang L, He M, Chen B, Hu B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199 : 435– 444

[19]

Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7( 25): 13758– 13767

[20]

Su Y Y, Zhang M J, Wang W, Deng C F, Peng J, Liu Z, Faraj Y, Ju X J, Xie R, Chu L Y. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1590– 1600

[21]

Ataei-Germi T, Nematollahzadeh A. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470 : 172– 182

[22]

Zhang M J, Chen T, Zhang P, Li Z L, Chen L, Su Y Y, Qiu L D, Peng G, Wang W, Chu L Y. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16( 10): 2581– 2593

[23]

Yu C, Zhu W, He Z, Xu J, Fang F, Gao Z, Ding W, Wang Y, Wang J, Wang J, Huang A, Cheng A, Wei Y, Ai S. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615 : 126255

[24]

Yu D, Li L, Wu M, Crittenden J C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251 : 66– 75

[25]

Zhang Y, Zhou J, Chen X, Wang L, Cai W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369 : 745– 757

[26]

Xie A, Cui J, Yang J, Chen Y, Lang J, Li C, Yan Y, Dai J. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264 : 118548

[27]

Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43( 9): 3792– 3798

[28]

Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9( 1): 51

[29]

Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B T, Hao Q, Lu S. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259 : 118064

[30]

Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, Wu M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221 : 119– 128

[31]

Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46( 47): 8970– 8974

[32]

Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52( 31): 8084– 8087

[33]

Li W, Zhang L Y, Ge X H, Xu B Y, Zhang W X, Qu L L, Choi C H, Xu J H, Zhang A, Lee H M, Weitz D A. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47( 15): 5646– 5683

[34]

Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11( 9): 1587– 1592

[35]

Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231 : 116242

[36]

Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47( 2): 373– 384

[37]

Wang B J, Prinsen P, Wang H Z, Bai Z S, Wang H L, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46( 3): 855– 914

[38]

Gao Y, Li S, Li Y, Yao L, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202 : 165– 174

[39]

Tang J, Wang J. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52( 9): 5367– 5377

[40]

Yuan R, Qiu J, Yue C, Shen C, Li D, Zhu C, Liu F, Li A. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401 : 126020

[41]

Hu X, Li R, Zhao S, Xing Y. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396 : 1393– 1402

[42]

Lian Z, Wei C, Gao B, Yang X, Chan Y, Wang J, Chen G Z, Koh K S, Shi Y, Yan Y, Ren Y, He J, Liu F. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10( 16): 9210– 9225

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6559KB)

2642

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/