Frontiers of Chemical Science and Engineering >
Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions
Received date: 19 Jul 2021
Accepted date: 04 Oct 2021
Published date: 15 Jun 2022
Copyright
Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.
Key words: hydrodesulfurization; hydrodenitrogenation; particle shape; pore structure
Yao Shi, Zhao Li, Changfeng Yang, Zhanlin Yang, Zhenhui Lv, Chong Peng, Bao-Lian Su, Weikang Yuan, Xinggui Zhou, Xuezhi Duan. Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 897-908. DOI: 10.1007/s11705-021-2127-x
1 |
Ancheyta-Juárez J, Aguilar-Rodríguez E, Salazar-Sotelo D, Betancourt-Rivera G, Leiva-Nuncio M. Hydrotreating of straight run gas oil light cycle oil blends. Applied Catalysis A, General, 1999, 180(1–2): 195–205
|
2 |
Marroquín-Sánchez G, Ancheyta-Juárez J. Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor. Applied Catalysis A, General, 2001, 207(1–2): 407–420
|
3 |
Schmitz C, Datsevitch L, Jess A. Deep desulfurization of diesel oil: kinetic studies and process-improvement by the use of a two-phase reactor with pre-saturator. Chemical Engineering Science, 2004, 59(14): 2821–2829
|
4 |
Novaes L da R, de Resende N S, Salim V M M, Secchi A R. Modeling, simulation and kinetic parameter estimation for diesel hydrotreatin. Fuel, 2017, 209: 184–193
|
5 |
Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1–2): 1–68
|
6 |
Mjalli F S, Ahmed O U, Al-Wahaibi T, Al-Wahaibi Y, Al Nashef I M. Deep oxidative desulfurization of liquid fuels. Reviews in Chemical Engineering, 2014, 30(4): 337–378
|
7 |
Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M. Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 2003, 84(3–4): 129–138
|
8 |
Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel and Energy Abstracts, 2003, 82(6): 607–631
|
9 |
Bej S K. Performance evaluation of hydroprocessing catalysts—a review of experimental techniques. Energy & Fuels, 2002, 16(3): 774–784
|
10 |
De Bruljn A, Naka I, Sonnemans J W M. Effect of the noncylindrical shape of extrudates on the hydrodesulfurization of oil fractions. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(1): 40–45
|
11 |
Jarullah A T, Mujtaba I M, Wood A S. Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil. Chemical Engineering Science, 2011, 66(5): 859–871
|
12 |
Mann P, Diez F V, Ordonez S. Fixed bed membrane reactors for WGSR-based hydrogen production: optimization of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 2012, 37(6): 4997–5010
|
13 |
Farahani H F, Shahhosseini S. Simulation of hydrodesulfurization trickle bed reactor. Chemical Product and Process Modeling, 2011, 6(1): 1–19
|
14 |
Ancheyta J, Muñoz J A D, Macías M J. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes. Catalysis Today, 2005, 109(1–4): 120–127
|
15 |
Macías M J, Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catalysis Today, 2004, 98(1–2): 243–252
|
16 |
Macías Hernández M J, Morales R D, Ramírez-Lopez A. Simulation of the effectiveness factor for a tri-lobular catalyst on the hydrodesulfurization of diesel. International Journal of Chemical Reactor Engineering, 2009, 7(1): 91–97
|
17 |
Kolitcheff S, Jolimate E, Hugon A, Verstraete J, Rivallan M, Carrette P L, Couenne F, Tayakout-Fayolle M. Tortuosity and mass transfer limitations in industrial hydrotreating catalysts: effect of particle shape and size distribution. Catalysis Science & Technology, 2018, 8(10): 4537–4549
|
18 |
Shi Y, Yang C F, Zhao X Q, Cao Y Q, Qian G, Lu M K, Ye G H, Peng C, Sui B K, Lv Z H,
|
19 |
Yang L, Lu J F, Chen H Y, Ruckenstein E, Qin Y H, Wang T L, Sun W, Wang C W. Screening and improving porous materials for ultradeep desulfurization of gasoline. Industrial & Engineering Chemistry Research, 2020, 60(1): 604–613
|
20 |
Klimova T, Peña L, Lizama L, Salcedo C, Gutiérrez O Y. Modification of activity and selectivity of NiMo/SBA-15 HDS catalysts by grafting of different metal oxides on the support surface. Industrial & Engineering Chemistry Research, 2009, 48(3): 1126–1133
|
21 |
Salmas C E, Androutsopoulos G P. A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data. Industrial & Engineering Chemistry Research, 2011, 40(2): 721–730
|
22 |
Zhou Z, Chen S L, Hua D, Zhang J H. Preparation and evaluation of a well-ordered mesoporous nickel-molybdenum/silica opal hydrodesulfurization model catalyst. Transition Metal Chemistry, 2011, 37(1): 25–30
|
23 |
Lv Y P, Wang X L, Gao D W, Ma X L, Li S N, Wang Y, Song G L, Duan A J, Chen G Z. Hierarchically porous ZSM-5/SBA-15 zeolite: tuning pore structure and acidity for enhanced hydro-upgrading of FCC gasoline. Industrial & Engineering Chemistry Research, 2018, 57(42): 14031–14043
|
24 |
Mederos F S, Ancheyta J, Elizalde I. Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil. Applied Catalysis A, General, 2012, 425–426: 13–27
|
25 |
Macé O, Wei J. Diffusion in random particle models for hydrodemetalation catalysts. Industrial & Engineering Chemistry Research, 1991, 30(5): 909–918
|
26 |
Rao S M, Coppens M O. Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—application to hydrodemetalation. Chemical Engineering Science, 2012, 83: 66–76
|
27 |
Topalian P J, Liyanage D R, Danforth S J, Aquino A I, Brock S L, Bussell M E. Effect of particle size on the deep HDS properties of Ni2P catalysts. Journal of Physical Chemistry C, 2019, 123(42): 25701–25711
|
28 |
Boahene P E, Soni K, Dalai A K, Adjaye J. Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Applied Catalysis A, General, 2011, 402(1–2): 31–40
|
29 |
Mouli K C, Soni K K, Dalai A K, Adjaye J. Effect of pore diameter of Ni-Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil. Applied Catalysis A, General, 2011, 404(1–2): 21–29
|
/
〈 |
|
〉 |