Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions

Yao Shi, Zhao Li, Changfeng Yang, Zhanlin Yang, Zhenhui Lv, Chong Peng, Bao-Lian Su, Weikang Yuan, Xinggui Zhou, Xuezhi Duan

PDF(2705 KB)
PDF(2705 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 897-908. DOI: 10.1007/s11705-021-2127-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions

Author information +
History +

Abstract

Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

Graphical abstract

Keywords

hydrodesulfurization / hydrodenitrogenation / particle shape / pore structure

Cite this article

Download citation ▾
Yao Shi, Zhao Li, Changfeng Yang, Zhanlin Yang, Zhenhui Lv, Chong Peng, Bao-Lian Su, Weikang Yuan, Xinggui Zhou, Xuezhi Duan. Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions. Front. Chem. Sci. Eng., 2022, 16(6): 897‒908 https://doi.org/10.1007/s11705-021-2127-x

References

[1]
Ancheyta-Juárez J, Aguilar-Rodríguez E, Salazar-Sotelo D, Betancourt-Rivera G, Leiva-Nuncio M. Hydrotreating of straight run gas oil light cycle oil blends. Applied Catalysis A, General, 1999, 180(1–2): 195–205
CrossRef Google scholar
[2]
Marroquín-Sánchez G, Ancheyta-Juárez J. Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor. Applied Catalysis A, General, 2001, 207(1–2): 407–420
CrossRef Google scholar
[3]
Schmitz C, Datsevitch L, Jess A. Deep desulfurization of diesel oil: kinetic studies and process-improvement by the use of a two-phase reactor with pre-saturator. Chemical Engineering Science, 2004, 59(14): 2821–2829
CrossRef Google scholar
[4]
Novaes L da R, de Resende N S, Salim V M M, Secchi A R. Modeling, simulation and kinetic parameter estimation for diesel hydrotreatin. Fuel, 2017, 209: 184–193
CrossRef Google scholar
[5]
Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1–2): 1–68
CrossRef Google scholar
[6]
Mjalli F S, Ahmed O U, Al-Wahaibi T, Al-Wahaibi Y, Al Nashef I M. Deep oxidative desulfurization of liquid fuels. Reviews in Chemical Engineering, 2014, 30(4): 337–378
CrossRef Google scholar
[7]
Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M. Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 2003, 84(3–4): 129–138
CrossRef Google scholar
[8]
Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel and Energy Abstracts, 2003, 82(6): 607–631
[9]
Bej S K. Performance evaluation of hydroprocessing catalysts—a review of experimental techniques. Energy & Fuels, 2002, 16(3): 774–784
CrossRef Google scholar
[10]
De Bruljn A, Naka I, Sonnemans J W M. Effect of the noncylindrical shape of extrudates on the hydrodesulfurization of oil fractions. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(1): 40–45
CrossRef Google scholar
[11]
Jarullah A T, Mujtaba I M, Wood A S. Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil. Chemical Engineering Science, 2011, 66(5): 859–871
CrossRef Google scholar
[12]
Mann P, Diez F V, Ordonez S. Fixed bed membrane reactors for WGSR-based hydrogen production: optimization of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 2012, 37(6): 4997–5010
CrossRef Google scholar
[13]
Farahani H F, Shahhosseini S. Simulation of hydrodesulfurization trickle bed reactor. Chemical Product and Process Modeling, 2011, 6(1): 1–19
CrossRef Google scholar
[14]
Ancheyta J, Muñoz J A D, Macías M J. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes. Catalysis Today, 2005, 109(1–4): 120–127
CrossRef Google scholar
[15]
Macías M J, Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catalysis Today, 2004, 98(1–2): 243–252
CrossRef Google scholar
[16]
Macías Hernández M J, Morales R D, Ramírez-Lopez A. Simulation of the effectiveness factor for a tri-lobular catalyst on the hydrodesulfurization of diesel. International Journal of Chemical Reactor Engineering, 2009, 7(1): 91–97
CrossRef Google scholar
[17]
Kolitcheff S, Jolimate E, Hugon A, Verstraete J, Rivallan M, Carrette P L, Couenne F, Tayakout-Fayolle M. Tortuosity and mass transfer limitations in industrial hydrotreating catalysts: effect of particle shape and size distribution. Catalysis Science & Technology, 2018, 8(10): 4537–4549
CrossRef Google scholar
[18]
Shi Y, Yang C F, Zhao X Q, Cao Y Q, Qian G, Lu M K, Ye G H, Peng C, Sui B K, Lv Z H, . Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets. Industrial & Engineering Chemistry Research, 2019, 58(23): 9829–9837
CrossRef Google scholar
[19]
Yang L, Lu J F, Chen H Y, Ruckenstein E, Qin Y H, Wang T L, Sun W, Wang C W. Screening and improving porous materials for ultradeep desulfurization of gasoline. Industrial & Engineering Chemistry Research, 2020, 60(1): 604–613
CrossRef Google scholar
[20]
Klimova T, Peña L, Lizama L, Salcedo C, Gutiérrez O Y. Modification of activity and selectivity of NiMo/SBA-15 HDS catalysts by grafting of different metal oxides on the support surface. Industrial & Engineering Chemistry Research, 2009, 48(3): 1126–1133
CrossRef Google scholar
[21]
Salmas C E, Androutsopoulos G P. A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data. Industrial & Engineering Chemistry Research, 2011, 40(2): 721–730
CrossRef Google scholar
[22]
Zhou Z, Chen S L, Hua D, Zhang J H. Preparation and evaluation of a well-ordered mesoporous nickel-molybdenum/silica opal hydrodesulfurization model catalyst. Transition Metal Chemistry, 2011, 37(1): 25–30
CrossRef Google scholar
[23]
Lv Y P, Wang X L, Gao D W, Ma X L, Li S N, Wang Y, Song G L, Duan A J, Chen G Z. Hierarchically porous ZSM-5/SBA-15 zeolite: tuning pore structure and acidity for enhanced hydro-upgrading of FCC gasoline. Industrial & Engineering Chemistry Research, 2018, 57(42): 14031–14043
CrossRef Google scholar
[24]
Mederos F S, Ancheyta J, Elizalde I. Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil. Applied Catalysis A, General, 2012, 425–426: 13–27
CrossRef Google scholar
[25]
Macé O, Wei J. Diffusion in random particle models for hydrodemetalation catalysts. Industrial & Engineering Chemistry Research, 1991, 30(5): 909–918
CrossRef Google scholar
[26]
Rao S M, Coppens M O. Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—application to hydrodemetalation. Chemical Engineering Science, 2012, 83: 66–76
CrossRef Google scholar
[27]
Topalian P J, Liyanage D R, Danforth S J, Aquino A I, Brock S L, Bussell M E. Effect of particle size on the deep HDS properties of Ni2P catalysts. Journal of Physical Chemistry C, 2019, 123(42): 25701–25711
CrossRef Google scholar
[28]
Boahene P E, Soni K, Dalai A K, Adjaye J. Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Applied Catalysis A, General, 2011, 402(1–2): 31–40
CrossRef Google scholar
[29]
Mouli K C, Soni K K, Dalai A K, Adjaye J. Effect of pore diameter of Ni-Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil. Applied Catalysis A, General, 2011, 404(1–2): 21–29
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22038003, 21922803, 22178100 and 21776077), the Innovation Program of Shanghai Municipal Education Commission, the Program of Shanghai Academic/Technology Research Leader (Grant No. 21XD1421000).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-021-2127-x and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2705 KB)

Accesses

Citations

Detail

Sections
Recommended

/