RESEARCH ARTICLE

Deep eutectic solvent inclusions for high-k composite dielectric elastomers

  • Changgeng Zhang ,
  • Qi Zhang
Expand
  • School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China

Received date: 01 Aug 2021

Accepted date: 26 Oct 2021

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press 2022

Abstract

Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

Cite this article

Changgeng Zhang , Qi Zhang . Deep eutectic solvent inclusions for high-k composite dielectric elastomers[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(6) : 996 -1002 . DOI: 10.1007/s11705-022-2138-2

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22078276), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C291), Shenzhen Science and Technology Program (Grant No. KQTD20170810141424366), Shenzhen Key Laboratory of Advanced Materials Product Engineering (Grant No. ZDSYS20190911164401990). Qi Zhang thanks the Presidential Fund (Grant No. PF01000949) for supporting his research at CUHK-Shenzhen. Dr. Yifeng Sheng is thanked for the advice on emulsion preparation. Prof. Xilin Wang and Ms. Jinfeng Peng from Tsinghua Shenzhen International Graduate School, Prof. Zhijun Dong and Ms. Lili Wu from Shenzhen Institute of Information Technology are thanked for their support in sample testing.
1
Shian S, Bertoldi K, Clarke D R. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27( 43): 6814– 6819

DOI

2
Rafsanjani A, Zhang Y, Liu B, Rubinstein S M, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Science Robotics, 2018, 3( 15): eaar7555

DOI

3
Duduta M, Wood R J, Clarke D R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 2016, 28( 36): 8058– 8063

DOI

4
Poulin A, Rosset S, Shea H R. Printing low-voltage dielectric elastomer actuators. Applied Physics Letters, 2015, 107( 24): 244104

DOI

5
Hajiesmaili E, Clarke D R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10( 1): 1– 7

DOI

6
Shi L, Yang R, Lu S, Jia K, Xiao C, Lu T, Wang T, Wei W, Tan H, Ding S. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials, 2018, 10( 8): 821– 826

DOI

7
Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee P S, Long Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 2019, 9( 39): 1902066

DOI

8
Kim H N, Yang S. Responsive smart windows from nanoparticle–polymer composites. Advanced Functional Materials, 2020, 30( 2): 1902597

DOI

9
Kim H N, Ge D, Lee E, Yang S. Multistate and on-demand smart windows. Advanced Materials, 2018, 30( 43): 1803847

DOI

10
Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359( 6383): 1495– 1500

DOI

11
Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287( 5454): 836– 839

DOI

12
Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9( 10): 859– 864

DOI

13
Carpi F, Bauer S, De Rossi D. Stretching dielectric elastomer performance. Science, 2010, 330( 6012): 1759– 1761

DOI

14
Carpi F, Frediani G, Turco S, De Rossi D. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011, 21( 21): 4152– 4158

DOI

15
Quinsaat J E Q, Alexandru M, Nüesch F A, Hofmann H, Borgschulte A, Opris D M. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 28): 14675– 14685

DOI

16
Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angewandte Chemie International Edition, 2013, 52( 36): 9409– 9421

DOI

17
Sun W, Mao J, Wang S, Zhang L, Cheng Y. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15( 1): 18– 34

DOI

18
Li P, Wang Y, Gupta U, Liu J, Zhang L, Du D, Foo C C, Ouyang J, Zhu J. Transparent soft robots for effective camouflage. Advanced Functional Materials, 2019, 29( 37): 1901908

DOI

19
Zhalmuratova D, Chung H J. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, 2( 3): 1073– 1091

DOI

20
Ilami M, Bagheri H, Ahmed R, Skowronek E O, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021, 33( 19): 2003139

DOI

21
Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Applied Materials & Interfaces, 2015, 7( 20): 10755– 10762

DOI

22
Panahi M, Zahiri B, Noroozi M. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators. A, Physical, 2019, 293 : 222– 241

DOI

23
Cakmak E, Fang X, Yildiz O, Bradford P D, Ghosh T K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon, 2015, 89 : 113– 120

DOI

24
Zhao H, Zhang L, Yang M H, Dang Z M, Bai J. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Applied Physics Letters, 2015, 106( 9): 092904

DOI

25
Luo S, Yu S, Sun R, Wong C P. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Applied Materials & Interfaces, 2014, 6( 1): 176– 182

DOI

26
Bartlett M D, Fassler A, Kazem N, Markvicka E J, Mandal P, Majidi C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Advanced Materials, 2016, 28( 19): 3726– 3731

DOI

27
Pan C, Markvicka E J, Malakooti M H, Yan J, Hu L, Matyjaszewski K, Majidi C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Advanced Materials, 2019, 31( 23): e1900663

DOI

28
Ankit T N, Ho F, Krisnadi F, Kulkarni M R, Nguyen L L, Koh S J A, Mathews N. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Applied Materials & Interfaces, 2020, 12( 33): 37561– 37570

DOI

29
Shi L, Zhang C, Du Y, Zhu H, Zhang Q, Zhu S. Improving dielectric constant of polymers through liquid electrolyte inclusion. Advanced Functional Materials, 2021, 31( 8): 2007863

DOI

30
Zhong M, Tang Q F, Zhu Y W, Chen X Y, Zhang Z J. An alternative electrolyte of deep eutectic solvent by ChCl and EG for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452 : 227847

DOI

31
Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57 : 625– 634

DOI

32
Parnham E R, Drylie E A, Wheatley P S, Slawin A M, Morris R E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie International Edition, 2006, 118( 30): 5084– 5088

DOI

33
García-Argüelles S, Serrano M, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir, 2013, 29( 30): 9525– 9534

DOI

34
Zhang C, Ding Y, Zhang L, Wang X, Zhao Y, Zhang X, Yu G. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angewandte Chemie International Edition, 2017, 56( 26): 7454– 7459

DOI

35
Wu J, Liang Q, Yu X, Lü Q F, Ma L, Qin X, Chen G, Li B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Advanced Functional Materials, 2021, 31( 22): 2011102

DOI

36
Tadros T F. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1994, 91 : 39– 55

DOI

37
Style R W, Boltyanskiy R, Allen B, Jensen K E, Foote H P, Wettlaufer J S, Dufresne E R. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11( 1): 82– 87

DOI

38
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81( 10): 6692– 6699

DOI

Outlines

/