Frontiers of Chemical Science and Engineering >
Deep eutectic solvent inclusions for high-k composite dielectric elastomers
Received date: 01 Aug 2021
Accepted date: 26 Oct 2021
Published date: 15 Jun 2022
Copyright
Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.
Changgeng Zhang , Qi Zhang . Deep eutectic solvent inclusions for high-k composite dielectric elastomers[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(6) : 996 -1002 . DOI: 10.1007/s11705-022-2138-2
1 |
Shian S, Bertoldi K, Clarke D R. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27( 43): 6814– 6819
|
2 |
Rafsanjani A, Zhang Y, Liu B, Rubinstein S M, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Science Robotics, 2018, 3( 15): eaar7555
|
3 |
Duduta M, Wood R J, Clarke D R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 2016, 28( 36): 8058– 8063
|
4 |
Poulin A, Rosset S, Shea H R. Printing low-voltage dielectric elastomer actuators. Applied Physics Letters, 2015, 107( 24): 244104
|
5 |
Hajiesmaili E, Clarke D R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10( 1): 1– 7
|
6 |
Shi L, Yang R, Lu S, Jia K, Xiao C, Lu T, Wang T, Wei W, Tan H, Ding S. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials, 2018, 10( 8): 821– 826
|
7 |
Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee P S, Long Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 2019, 9( 39): 1902066
|
8 |
Kim H N, Yang S. Responsive smart windows from nanoparticle–polymer composites. Advanced Functional Materials, 2020, 30( 2): 1902597
|
9 |
Kim H N, Ge D, Lee E, Yang S. Multistate and on-demand smart windows. Advanced Materials, 2018, 30( 43): 1803847
|
10 |
Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359( 6383): 1495– 1500
|
11 |
Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287( 5454): 836– 839
|
12 |
Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9( 10): 859– 864
|
13 |
Carpi F, Bauer S, De Rossi D. Stretching dielectric elastomer performance. Science, 2010, 330( 6012): 1759– 1761
|
14 |
Carpi F, Frediani G, Turco S, De Rossi D. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011, 21( 21): 4152– 4158
|
15 |
Quinsaat J E Q, Alexandru M, Nüesch F A, Hofmann H, Borgschulte A, Opris D M. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 28): 14675– 14685
|
16 |
Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angewandte Chemie International Edition, 2013, 52( 36): 9409– 9421
|
17 |
Sun W, Mao J, Wang S, Zhang L, Cheng Y. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15( 1): 18– 34
|
18 |
Li P, Wang Y, Gupta U, Liu J, Zhang L, Du D, Foo C C, Ouyang J, Zhu J. Transparent soft robots for effective camouflage. Advanced Functional Materials, 2019, 29( 37): 1901908
|
19 |
Zhalmuratova D, Chung H J. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, 2( 3): 1073– 1091
|
20 |
Ilami M, Bagheri H, Ahmed R, Skowronek E O, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021, 33( 19): 2003139
|
21 |
Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Applied Materials & Interfaces, 2015, 7( 20): 10755– 10762
|
22 |
Panahi M, Zahiri B, Noroozi M. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators. A, Physical, 2019, 293 : 222– 241
|
23 |
Cakmak E, Fang X, Yildiz O, Bradford P D, Ghosh T K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon, 2015, 89 : 113– 120
|
24 |
Zhao H, Zhang L, Yang M H, Dang Z M, Bai J. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Applied Physics Letters, 2015, 106( 9): 092904
|
25 |
Luo S, Yu S, Sun R, Wong C P. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Applied Materials & Interfaces, 2014, 6( 1): 176– 182
|
26 |
Bartlett M D, Fassler A, Kazem N, Markvicka E J, Mandal P, Majidi C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Advanced Materials, 2016, 28( 19): 3726– 3731
|
27 |
Pan C, Markvicka E J, Malakooti M H, Yan J, Hu L, Matyjaszewski K, Majidi C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Advanced Materials, 2019, 31( 23): e1900663
|
28 |
Ankit T N, Ho F, Krisnadi F, Kulkarni M R, Nguyen L L, Koh S J A, Mathews N. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Applied Materials & Interfaces, 2020, 12( 33): 37561– 37570
|
29 |
Shi L, Zhang C, Du Y, Zhu H, Zhang Q, Zhu S. Improving dielectric constant of polymers through liquid electrolyte inclusion. Advanced Functional Materials, 2021, 31( 8): 2007863
|
30 |
Zhong M, Tang Q F, Zhu Y W, Chen X Y, Zhang Z J. An alternative electrolyte of deep eutectic solvent by ChCl and EG for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452 : 227847
|
31 |
Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57 : 625– 634
|
32 |
Parnham E R, Drylie E A, Wheatley P S, Slawin A M, Morris R E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie International Edition, 2006, 118( 30): 5084– 5088
|
33 |
García-Argüelles S, Serrano M, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir, 2013, 29( 30): 9525– 9534
|
34 |
Zhang C, Ding Y, Zhang L, Wang X, Zhao Y, Zhang X, Yu G. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angewandte Chemie International Edition, 2017, 56( 26): 7454– 7459
|
35 |
Wu J, Liang Q, Yu X, Lü Q F, Ma L, Qin X, Chen G, Li B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Advanced Functional Materials, 2021, 31( 22): 2011102
|
36 |
Tadros T F. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1994, 91 : 39– 55
|
37 |
Style R W, Boltyanskiy R, Allen B, Jensen K E, Foote H P, Wettlaufer J S, Dufresne E R. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11( 1): 82– 87
|
38 |
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81( 10): 6692– 6699
|
/
〈 | 〉 |