Deep eutectic solvent inclusions for high-k composite dielectric elastomers

Changgeng Zhang, Qi Zhang

PDF(2227 KB)
PDF(2227 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 996-1002. DOI: 10.1007/s11705-022-2138-2
RESEARCH ARTICLE

Deep eutectic solvent inclusions for high-k composite dielectric elastomers

Author information +
History +

Abstract

Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

Graphical abstract

Keywords

composite materials / deep eutectic solvent / dielectric elastomer / high dielectric constant

Cite this article

Download citation ▾
Changgeng Zhang, Qi Zhang. Deep eutectic solvent inclusions for high-k composite dielectric elastomers. Front. Chem. Sci. Eng., 2022, 16(6): 996‒1002 https://doi.org/10.1007/s11705-022-2138-2

References

[1]
Shian S, Bertoldi K, Clarke D R. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27( 43): 6814– 6819
CrossRef Google scholar
[2]
Rafsanjani A, Zhang Y, Liu B, Rubinstein S M, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Science Robotics, 2018, 3( 15): eaar7555
CrossRef Google scholar
[3]
Duduta M, Wood R J, Clarke D R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 2016, 28( 36): 8058– 8063
CrossRef Google scholar
[4]
Poulin A, Rosset S, Shea H R. Printing low-voltage dielectric elastomer actuators. Applied Physics Letters, 2015, 107( 24): 244104
CrossRef Google scholar
[5]
Hajiesmaili E, Clarke D R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10( 1): 1– 7
CrossRef Google scholar
[6]
Shi L, Yang R, Lu S, Jia K, Xiao C, Lu T, Wang T, Wei W, Tan H, Ding S. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials, 2018, 10( 8): 821– 826
CrossRef Google scholar
[7]
Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee P S, Long Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 2019, 9( 39): 1902066
CrossRef Google scholar
[8]
Kim H N, Yang S. Responsive smart windows from nanoparticle–polymer composites. Advanced Functional Materials, 2020, 30( 2): 1902597
CrossRef Google scholar
[9]
Kim H N, Ge D, Lee E, Yang S. Multistate and on-demand smart windows. Advanced Materials, 2018, 30( 43): 1803847
CrossRef Google scholar
[10]
Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359( 6383): 1495– 1500
CrossRef Google scholar
[11]
Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287( 5454): 836– 839
CrossRef Google scholar
[12]
Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9( 10): 859– 864
CrossRef Google scholar
[13]
Carpi F, Bauer S, De Rossi D. Stretching dielectric elastomer performance. Science, 2010, 330( 6012): 1759– 1761
CrossRef Google scholar
[14]
Carpi F, Frediani G, Turco S, De Rossi D. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011, 21( 21): 4152– 4158
CrossRef Google scholar
[15]
Quinsaat J E Q, Alexandru M, Nüesch F A, Hofmann H, Borgschulte A, Opris D M. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 28): 14675– 14685
CrossRef Google scholar
[16]
Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angewandte Chemie International Edition, 2013, 52( 36): 9409– 9421
CrossRef Google scholar
[17]
Sun W, Mao J, Wang S, Zhang L, Cheng Y. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15( 1): 18– 34
CrossRef Google scholar
[18]
Li P, Wang Y, Gupta U, Liu J, Zhang L, Du D, Foo C C, Ouyang J, Zhu J. Transparent soft robots for effective camouflage. Advanced Functional Materials, 2019, 29( 37): 1901908
CrossRef Google scholar
[19]
Zhalmuratova D, Chung H J. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, 2( 3): 1073– 1091
CrossRef Google scholar
[20]
Ilami M, Bagheri H, Ahmed R, Skowronek E O, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021, 33( 19): 2003139
CrossRef Google scholar
[21]
Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Applied Materials & Interfaces, 2015, 7( 20): 10755– 10762
CrossRef Google scholar
[22]
Panahi M, Zahiri B, Noroozi M. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators. A, Physical, 2019, 293 : 222– 241
CrossRef Google scholar
[23]
Cakmak E, Fang X, Yildiz O, Bradford P D, Ghosh T K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon, 2015, 89 : 113– 120
CrossRef Google scholar
[24]
Zhao H, Zhang L, Yang M H, Dang Z M, Bai J. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Applied Physics Letters, 2015, 106( 9): 092904
CrossRef Google scholar
[25]
Luo S, Yu S, Sun R, Wong C P. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Applied Materials & Interfaces, 2014, 6( 1): 176– 182
CrossRef Google scholar
[26]
Bartlett M D, Fassler A, Kazem N, Markvicka E J, Mandal P, Majidi C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Advanced Materials, 2016, 28( 19): 3726– 3731
CrossRef Google scholar
[27]
Pan C, Markvicka E J, Malakooti M H, Yan J, Hu L, Matyjaszewski K, Majidi C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Advanced Materials, 2019, 31( 23): e1900663
CrossRef Google scholar
[28]
Ankit T N, Ho F, Krisnadi F, Kulkarni M R, Nguyen L L, Koh S J A, Mathews N. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Applied Materials & Interfaces, 2020, 12( 33): 37561– 37570
CrossRef Google scholar
[29]
Shi L, Zhang C, Du Y, Zhu H, Zhang Q, Zhu S. Improving dielectric constant of polymers through liquid electrolyte inclusion. Advanced Functional Materials, 2021, 31( 8): 2007863
CrossRef Google scholar
[30]
Zhong M, Tang Q F, Zhu Y W, Chen X Y, Zhang Z J. An alternative electrolyte of deep eutectic solvent by ChCl and EG for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452 : 227847
CrossRef Google scholar
[31]
Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57 : 625– 634
CrossRef Google scholar
[32]
Parnham E R, Drylie E A, Wheatley P S, Slawin A M, Morris R E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie International Edition, 2006, 118( 30): 5084– 5088
CrossRef Google scholar
[33]
García-Argüelles S, Serrano M, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir, 2013, 29( 30): 9525– 9534
CrossRef Google scholar
[34]
Zhang C, Ding Y, Zhang L, Wang X, Zhao Y, Zhang X, Yu G. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angewandte Chemie International Edition, 2017, 56( 26): 7454– 7459
CrossRef Google scholar
[35]
Wu J, Liang Q, Yu X, Lü Q F, Ma L, Qin X, Chen G, Li B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Advanced Functional Materials, 2021, 31( 22): 2011102
CrossRef Google scholar
[36]
Tadros T F. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1994, 91 : 39– 55
CrossRef Google scholar
[37]
Style R W, Boltyanskiy R, Allen B, Jensen K E, Foote H P, Wettlaufer J S, Dufresne E R. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11( 1): 82– 87
CrossRef Google scholar
[38]
Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81( 10): 6692– 6699
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22078276), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C291), Shenzhen Science and Technology Program (Grant No. KQTD20170810141424366), Shenzhen Key Laboratory of Advanced Materials Product Engineering (Grant No. ZDSYS20190911164401990). Qi Zhang thanks the Presidential Fund (Grant No. PF01000949) for supporting his research at CUHK-Shenzhen. Dr. Yifeng Sheng is thanked for the advice on emulsion preparation. Prof. Xilin Wang and Ms. Jinfeng Peng from Tsinghua Shenzhen International Graduate School, Prof. Zhijun Dong and Ms. Lili Wu from Shenzhen Institute of Information Technology are thanked for their support in sample testing.

RIGHTS & PERMISSIONS

2022 Higher Education Press 2022
AI Summary AI Mindmap
PDF(2227 KB)

Accesses

Citations

Detail

Sections
Recommended

/