Frontiers of Chemical Science and Engineering >
Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater
Received date: 08 Jul 2021
Accepted date: 05 Sep 2021
Published date: 15 Jul 2022
Copyright
Crystalline materials with specific facet atomic arrangements and crystal facet structures exhibit unique functions according to their facet effects, quantum size effects and physical and chemical properties. In this study, a novel high-exposure (110) facet of bismuth oxyiodide (BiOI) was prepared (denoted as BiOI-110), and designed as nanosheets rich in oxygen vacancies by crystal facet design and regulation. Graphitic carbon nitride was designed as curved carbon nitride with dibromopyrazine, denoted as DCN, which contributed to a significant structural distortion in plane symmetry and improved the separation of charge carriers. Novel heterostructured BiOI-110/DCN nanosheets with a high-exposure (110) facet and abundant oxygen vacancies were successfully designed to enhance the photocatalytic degradation of organic pollutants. It was demonstrated that complete and tight contact between BiOI-110 and DCN was achieved by changing the size and crystal facet of BiOI. Oxytetracycline (OTC) and methyl blue dyes were used as targets for pollutant degradation, and 85.6% and 96.5% photocatalytic degradation efficiencies, respectively, were observed in the optimal proportion of 7% BiOI-110/DCN. The experimental results and electron spin resonance analysis showed that •O2– and h+ played a major role in the process of pollutant degradation. Additionally, high-resolution liquid chromatography-mass spectrography was used to identify the reaction intermediates of OTC, and the possible degradation pathway of this pollutant was proposed. Finally, the excellent reusability of BiOI-110/DCN nanomaterials was confirmed, providing a new approach for the removal of antibiotics that are difficult to biodegrade. Overall, crystal facet design has been proven to have broad prospects in improving the water environment.
Jianxin Chen , Yupeng Li , Jihui Li , Jian Han , Guijun Zhu , Liang Ren . Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(7) : 1125 -1138 . DOI: 10.1007/s11705-021-2116-0
1 |
Shi Z, Zhang Y, Shen X, Duoerkun G, Zhu B, Zhang L, Li M, Chen Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chemical Engineering Journal, 2020, 386: 124010
|
2 |
Yi H, Yan M, Huang D, Zeng G, Lai C, Li M, Huo X, Qin L, Liu S, Liu X,
|
3 |
Wang Y, Dai L, Qu K, Qin L, Zhuang L, Yang H, Xu Z. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Frontiers of Chemical Science and Engineering, 2021, 15(4): 892–901
|
4 |
Chen J, Xing Z, Han J, Su M, Li Y, Lu A. Enhanced degradation of dyes by Cu-Co-Ni nanoparticles loaded on amino-modified octahedral metal-organic framework. Journal of Alloys and Compounds, 2020, 834: 155106
|
5 |
Li Z, Yang S, Zhou J, Li D, Zhou X, Ge C, Fang Y. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chemical Engineering Journal, 2014, 241: 344–351
|
6 |
Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 2016, 182: 620–640
|
7 |
Njud A, Hu B, Hayat T, Rabah S, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135
|
8 |
He R, Cheng K, Wei Z, Zhang S, Xu D. Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Applied Surface Science, 2019, 465: 964–972
|
9 |
Ye L, Chen J, Tian L, Liu J, Peng T, Deng K, Zan L. BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Applied Catalysis B: Environmental, 2013, 130–131: 1–7
|
10 |
Song G, Wu X, Xin F, Yin X. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Frontiers of Chemical Science and Engineering, 2017, 11(2): 1–8
|
11 |
Liu L, Huang H, Chen Z, Yu H, Wang K, Huang J, Yu H, Zhang Y. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angewandte Chemie International Edition, 2021, 60(33): 18303–18308
|
12 |
Li J, Yu Y, Zhang L. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014, 6(15): 8473–8488
|
13 |
Sun J, Wen J, Wu G, Zhang Z, Chen X, Wang G, Liu M. Harmonizing the electronic structures on BiOI with active oxygen vacancies toward facet-dependent antibacterial photodynamic therapy. Advanced Functional Materials, 2020, 30(42): 2004108
|
14 |
Chen T, Liu L, Hu C, Huang H. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42(9): 1413–1438
|
15 |
Cui Y, Zeng Z, Zheng J, Huang Z, Yang J. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, 4: 1–9
|
16 |
Chang C, Zhu L, Wang S, Chu X, Yue L. Novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation. ACS Applied Materials & Interfaces, 2014, 6(7): 5083–5093
|
17 |
Hu X, Zhang Y, Wang B, Li H, Dong W. Novel g-C3N4/BiOClxI1−x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light. Applied Catalysis B: Environmental, 2019, 256: 117789
|
18 |
Ichiro H, Yuto S, Eduardo G, Boiko C, Norimitsu T, Abderrazzak D. Docking strategy to construct thermostable, single-crystalline, hydrogen-bonded organic framework with high surface area. Angewandte Chemie International Edition, 2018, 130(39): 12832–12837
|
19 |
Wang S, Han X, Zhang Y, Tian N, Ma T, Huang H. Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Structures, 2020, 2(1): 2000061
|
20 |
Khan M, Zhang F, Osada M, Samuel S, Shen S. Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL, 2020, 4(8): 1–7
|
21 |
Xu Y, Yan A, Zhang X, Huang F, Li D, Zhao X, Weng H, Zhang Z. Nb/Se Co-doped BiOI nanomaterials with exposed (110) facets for enhanced visible-light-driven photocatalytic activity. Chemical Communications, 2021, 57(47): 5774–5777
|
22 |
Shi S, Gondal M, Rashid S, Qi Q, Al-Saadi A, Yamani Z, Sui Y, Xu Q, Shen K. Synthesis of g-C3N4/BiOClxBr1−x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 461(1): 202–211
|
23 |
Li Y, Zhao M, Zhang N, Li R, Chen J. Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites. Journal of Alloys and Compounds, 2015, 643: 106–110
|
24 |
Zhou C, Zeng G, Huang D, Luo Y, Cheng M, Liu Y, Xiong W, Yang Y, Song B, Wang W, Shao B, Li Z. Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light. Journal of Hazardous Materials, 2019, 386: 121947
|
25 |
Bai J, Sun J, Zhu X, Liu J, Zhang H, Yin X, Liu L. Enhancement of solar-driven photocatalytic activity of BiOI nanosheets through predominant exposed high energy facets and vacancy engineering. Small, 2020, 16(5): 1904783
|
26 |
Wang X, Zhang Y, Zhou C, Huo D, Zhang R, Wang L. Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2019, 268: 118390
|
27 |
Tian N, Huang H, Wang S, Zhang T, Du X, Zhang Y. Facet-charge-induced coupling dependent interfacial photocharge separation: a case of BiOI/g-C3N4 p-n junction. Applied Catalysis B: Environmental, 2020, 267: 118697
|
28 |
Yang Y, Zeng G, Huang D, Zhang C, He D, Zhou C, Wang W, Xiong W, Li X, Li B, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Applied Catalysis B: Environmental, 2020, 272: 118970
|
29 |
Zhang G, Wang X. A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution. Journal of Catalysis, 2013, 307: 246–253
|
30 |
Yang J, Liu X, Cao H, Shi Y, Xie Y, Xiao J. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Frontiers of Chemical Science and Engineering, 2019, 13(1): 185–191
|
31 |
Alam K M, Kumar P, Kar P, Thakur U K, Zeng S, Cui K, Shankar K. Enhanced charge separation in g-C3N4-BiOI heterostructures for visible light driven photoelectrochemical water splitting. Nanoscale Advances, 2019, 1(4): 1460–1471
|
32 |
Zhang Z, Pan Z, Guo Y, Wong P K, Zhou X, Bai R. In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light. Applied Catalysis B: Environmental, 2020, 261: 118212
|
33 |
Ramadan M, Abdellah A M, Mohamed S G, Allam N K. 3D interconnected binder-free electrospun MnO@C nanofibers for supercapacitor devices. Scientific Reports, 2018, 8(1): 7988
|
34 |
Yu H, Chen F, Li X, Huang H, Zhang Q, Su S, Wang K, Mao E, Mei B, Mul G, Ma T, Zhang Y. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nature Communications, 2021, 12(1): 4594
|
35 |
Li T, Wang C, Wang T, Zhu L. Highly efficient photocatalytic degradation toward peruorooctanoic acid by bromine doped BiOI with high exposure of (001) facet. Applied Catalysis B: Environmental, 2020, 268: 118442
|
36 |
Yan W, Sun R, Li M, Li L, Yang Z, Hua Z, Lu X, Liu C. Heterogeneous interfacial engineering of Pd/TiO2 with controllable carbon content for improved direct synthesis efficiency of H2O2. Chinese Journal of Catalysis, 2020, 41(2): 312–321
|
37 |
Geng Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 2021, 280: 119409
|
38 |
Ren Y, Li Y, Wu X, Wang J, Zhang G. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chinese Journal of Catalysis, 2021, 42(1): 69–77
|
39 |
Ong W, Putri L, Tan Y, Tan L, Li N, Ng Y, Wen X, Chai S. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Research, 2017, 10(5): 1673–1696
|
40 |
Sun L, Xiang L, Zhao X, Jia C, Yang J, Jin Z, Cheng X, Fan W. Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catalysis, 2015, 5(6): 3540–3551
|
41 |
Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Applied Materials & Interfaces, 2019, 11(44): 41440–41447
|
42 |
Jiao S, Zheng S, Yin D, Wang L, Chen L. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. Journal of Environmental Sciences, 2008, 20(7): 806–813
|
43 |
Tian Q, Dou X, Huang L, Wang L, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. Journal of Hazardous Materials, 2020, 382: 121084
|
44 |
Ye S, Zhou X, Xu Y, Lai W, Yan K, Huang L, Ling J, Zheng L. Photocatalytic performance of multi-walled carbon nanotube/BiVO4 synthesized by electro-spinning process and its degradation mechanisms on oxytetracycline. Chemical Engineering Journal, 2019, 373: 880–890
|
45 |
Murugalakshmi M, Mamba G, Muthuraj V. A novel In2S3/Gd2O3 p-n type visible light-driven heterojunction photocatalyst for dual role of Cr(VI) reduction and oxytetracycline degradation. Applied Surface Science, 2020, 527: 146890
|
46 |
Zhu X, Wang Y, Sun R, Zhou D. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 2013, 92(8): 925–932
|
47 |
Li B, Lai C, Zhang M, Liu S, Yi H, Liu X, An N, Zhou X, Li L, Fu Y,
|
48 |
Li N, Gao H, Wang X, Zhao S, Lv D, Yang G, Gao X, Fan H, Gao Y, Ge L. Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance. Chinese Journal of Catalysis, 2020, 41(3): 426–434
|
/
〈 | 〉 |