RESEARCH ARTICLE

Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

  • Feng Zhang , 1 ,
  • Lu Tan 1 ,
  • Li Gong 1 ,
  • Shuqi Liu 1 ,
  • Wangxi Fang 2 ,
  • Zhenggong Wang 1 ,
  • Shoujian Gao 2 ,
  • Jian Jin , 1
Expand
  • 1. College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
  • 2. i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Received date: 25 Apr 2021

Accepted date: 08 Jul 2021

Published date: 15 May 2022

Copyright

2021 Higher Education Press

Abstract

Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.

Cite this article

Feng Zhang , Lu Tan , Li Gong , Shuqi Liu , Wangxi Fang , Zhenggong Wang , Shoujian Gao , Jian Jin . Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(5) : 699 -708 . DOI: 10.1007/s11705-021-2093-3

Acknowledgments

This work was financially supported by the National Key Research and Development Project (Grant Nos. 2019YFC1711300 and 2019YFA0705800), the National Natural Science Funds for Distinguished Young Scholar (Grant No. 51625306), the National Natural Science Foundation of China (Grant Nos. 21988102 and 51873230), the Social Development Program of Jiangsu Province (Grant No. BE2019678).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-021-2093-3 and is accessible for authorized users.
1
Mi Y F, Zhao F Y, Guo Y S, Weng X D, Ye C C, An Q F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. Journal of Membrane Science, 2017, 541: 29–38

DOI

2
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): 1–6

DOI

3
Lively R P, Sholl D S. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

DOI

4
Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018

DOI

5
Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer, 2016, 103: 417–456

DOI

6
Santanu K, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348(6241): 1347–1352

DOI

7
Dizgea N, Epsztein R, Cheng W, Porter C J, Elimelech M. Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane. Journal of Membrane Science, 2018, 549: 357–365

DOI

8
Tan Z, Chen S F, Peng X S, Zhang L, Gao C J. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521

DOI

9
Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination, 2015, 356: 2226–2254

DOI

10
Wang Z, Wang Z X, Lin S H, Jin H L, Gao S J, Zhu Y Z, Jin J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9(1): 2004

DOI

11
You X D, Wu H, Zhang R N, Su Y L, Cao L, Yu Q Q, Yuan J Q, Xiao K, He M R, Jiang Z Y. Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10(1): 4160

DOI

12
Lin Z, Zhang Q G, Qu Y, Chen M M, Soyekwo F, Lin C X, Zhu A, Liu Q L. LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14819–14827

DOI

13
Zhang W H, Yin M, Zhao Q, Jin C G, Wang N, Ji S, Ritt C L, Elimelech M, An Q F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 2021, 16(3): 337–343

DOI

14
Zhang Y Q, Cheng X Q, Urban J J, Lau C H, Liu S Q, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47

DOI

15
Liu J T, Han G, Zhao D L, Lu Ka J, Gao J, Chung T S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6(41): eabb1110

DOI

16
Zhang Y Q, Guo J, Han G, Bai Y P, Ge Q C, Ma J, Lau C H, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): eabe8706

DOI

17
Wang J F, Liu Y Y, Fan Z M, Wang W, Wang B, Guo Z H. Ink-based 3D printing technologies for graphene-based materials: a review. Advanced Composites and Hybrid Materials, 2019, 2(1): 1–33

DOI

18
Gu J E, Lee S, Stafford C M, Lee J S, Choi W, Kim B Y, Baek K Y, Chan E P, Chung J Y, Bang J, Lee J H. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Advanced Materials, 2013, 25(34): 4778–4782

DOI

19
Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233): aaa2491

DOI

20
Shubin V, Linse P. Self-consistent-field modeling of polyelectrolyte adsorption on charge-regulating surfaces. Macromolecules, 1997, 30(19): 5944–5952

DOI

21
Ng L Y A, Mohammad W, Ng C Y, Leo C P, Rohani R. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination, 2014, 351: 19–26

DOI

22
Klitzing R V. Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 2006, 8(43): 5012–5033

DOI

23
Dubas S T, Schlenoff J B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999, 32(24): 8153–8160

DOI

24
Deng H Y, Xu Y Y, Zhu B K, Wei X Z, Liu F, Cui Z Y. Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). Journal of Membrane Science, 2008, 323(1): 125–133

DOI

25
Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33(11): 4213–4219

DOI

26
Bieker P, Schönhoff M. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules, 2010, 43(11): 5052–5059

DOI

27
Salomäki M, Vinokurov I A, Kankare J. Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir, 2005, 21(24): 11232–11240

DOI

28
Tan H L, McMurdo M J, Pan G, Van Patten P G. Temperature dependence of polyelectrolyte multilayer assembly. Langmuir, 2003, 19(22): 9311–9314

DOI

29
Bruening M L, Dotzauer D M, Jain P, Ouyang L, Baker G L. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir, 2008, 24(15): 7663–7673

DOI

30
Richardson J J, Cui J, Björnmalm M, Braunger J A, Ejima H, Caruso F. Innovation in layer-by-layer assembly. Chemical Reviews, 2016, 116(23): 14828–14867

DOI

31
Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science, 2013, 197–198: 85–107

DOI

32
Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir, 2013, 29(6): 1885–1892

DOI

33
Grooth J D, Oborný R, Potreck J, Nijmeijer K, de Vos W M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. Journal of Membrane Science, 2015, 475: 311–319

DOI

34
Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom I F J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polymer Chemistry, 2014, 5(6): 1817–1831

DOI

35
Schlenoff J B, Dubas S T. Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules, 2001, 34(3): 592–598

DOI

36
Li X, Goyens W, Ahmadiannamini P, Vanderlinden W, Feyter S D, Vankelecom I. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: study of preparation conditions. Journal of Membrane Science, 2010, 358(1–2): 150–157

DOI

37
DuChanois R M, Epsztein R, Trivedi J A, Elimelech M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. Journal of Membrane Science, 2019, 581: 413–420

DOI

38
Joseph N, Thomas J, Ahmadiannamini P, Gorp H V, Bernstein R, Feyter S D, Smet M, Dehaen W, Hoogenboom R, Vankelecom I F J. Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Advanced Functional Materials, 2017, 27(9): 1605068

DOI

39
Joseph N, Ahmadiannamini P, Jishna P S, Volodin A, Vankelecom I F J. ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. Journal of Membrane Science, 2015, 492: 271–280

DOI

40
Scheepers D, Chatillon B, Borneman Z, Nijmeijer K. Influence of charge density and ionic strength on diallyldimethylammonium chloride (DADMAC)-based polyelectrolyte multilayer membrane formation. Journal of Membrane Science, 2021, 617: 118619

DOI

41
Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559: 98–106

DOI

42
Önder T, Sacide A A. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. Journal of Colloid and Interface Science, 2019, 537: 215–227

DOI

43
Shi X S, Wang R, Xiao A K, Jia T Z, Sun S P, Wang Y. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations. ACS Applied Nano Materials, 2018, 1(11): 6320–6326

DOI

44
Ahmad N A, Goh P S, Wong K C, Zulhairun A K, Ismail A F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination, 2020, 476: 114167

DOI

45
Cao Y, Zhang H R, Guo S W, Luo J Q, Wan Y H. A roust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. Journal of Membrane Science, 2021, 629: 119287

DOI

46
Wang N X, Ji S L, Zhang G J, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Journal of Membrane Science, 2012, 213: 318–329

47
Yang L B, Wang Z, Zhang J L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 29(5): 15342–15355

DOI

48
Tan L, Gong L, Wang S Y, Zhu Y Z, Zhang F, Zhang Y T, Jin J. Superhydrophilic sub-1-nm porous membrane with electroneutral surface for nonselective transport of small organic molecules. ACS Applied Materials & Interfaces, 2020, 12(34): 38778–38787

DOI

49
Gong Y Q, Gao S J, Tian Y Y, Zhu Y Z, Fang W X, Wang Z G, Jin J. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600: 117874

DOI

50
Epsztein R, Shaulsky E, Dizge N, Warsinger D M, Elimelech M. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environmental Science & Technology, 2018, 52(7): 4108–4116

DOI

Outlines

/