Frontiers of Chemical Science and Engineering >
Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios
Received date: 21 Apr 2021
Accepted date: 09 Jun 2021
Published date: 15 Apr 2022
Copyright
The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.
Jinxiao Bo , Mei Li , Xinli Zhu , Qingfeng Ge , Jinyu Han , Hua Wang . Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(4) : 498 -510 . DOI: 10.1007/s11705-021-2082-6
1 |
Hsieh T, Zhang Y, Xu D, Wang C, Pickarts M, Chung C, Fan L, Tong A. Chemical looping gasification for producing high purity, H2-rich syngas in a cocurrent moving bed reducer with coal and methane cofeeds. Industrial & Engineering Chemistry Research, 2018, 57(7): 2461–2475
|
2 |
Lu S, Shi Y, Meng N, Lu S, Yu Y, Zhang B. Electrosynthesis of syngas via the co-reduction of CO2 and H2O. Cell Reports Physical Science, 2020, 1(11): 100237
|
3 |
Cui S, Yu C, Tan X, Huang H, Yao X, Qiu J. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3328–3335
|
4 |
Li H, Xiao N, Wang Y, Li C, Ye X, Guo Z, Pan X, Liu C, Bai J, Xiao J,
|
5 |
Qin B, Li Y, Fu H, Wang H, Chen S, Liu Z, Peng F. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst. ACS Applied Materials & Interfaces, 2018, 10(24): 20530–20539
|
6 |
Cho M, Seo J, Song J T, Lee J, Oh J. Silver nanowire/carbon sheet composites for electrochemical syngas generation with tunable H2/CO ratios. ACS Omega, 2017, 2(7): 3441–3446
|
7 |
Yao X, Guo Y, Liu B, Wang P, Sun J, Li W, Zhao C. Syngas production from electrochemical CO2 reduction on copper oxide electrodes in aqueous solution. ChemElectroChem, 2021, 8(3): 592–602
|
8 |
Lv K, Teng C, Shi M, Yuan Y, Zhu Y, Wang J, Kong Z, Lu X, Zhu Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Advanced Functional Materials, 2018, 28(49): 1802339
|
9 |
Wang J, Huang H, Sun J, Zhong D, Lu T. Syngas production with a highly-robust nickel(II) homogeneous electrocatalyst in a water-containing system. ACS Catalysis, 2018, 8(8): 7612–7620
|
10 |
Dong B, Qian S, Bu F, Wu Y, Feng L, Teng Y, Liu W, Li Z. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Applied Energy Materials, 2018, 1(9): 4662–4669
|
11 |
Daiyan R, Chen R, Kumar P, Bedford N M, Qu J, Cairney J M, Lu X, Amal R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12(8): 9307–9315
|
12 |
He Q, Liu D, Lee J H, Liu Y, Xie Z, Hwang S, Kattel S, Song L, Chen J G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angewandte Chemie International Edition, 2020, 59(8): 3033–3037
|
13 |
Meng N, Zhou W, Yu Y, Liu Y, Zhang B. Superficial hydroxyl and amino groups synergistically active polymeric carbon nitride for CO2 electroreduction. ACS Catalysis, 2019, 9(12): 10983–10989
|
14 |
Xie J, Zhao X, Wu M, Li Q, Wang Y, Yao J. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angewandte Chemie International Edition, 2018, 130(31): 9788–9792
|
15 |
Lamaison S, Wakerley D, Montero D, Rousse G, Taverna D, Giaume D, Mercier D, Blanchard J, Tran H N, Fontecave M,
|
16 |
Yang W, Zhang J, Si R, Cao L, Zhong D, Lu T. Efficient and steady production of 1:2 syngas (CO/H2) by simultaneous electrochemical reduction of CO2 and H2O. Inorganic Chemistry Frontiers, 2021, 8(7): 1695–1701
|
17 |
Tao L, Wang Y, Zou Y, Zhang N, Zhang Y, Wu Y, Wang Y, Chen R, Wang S. Charge transfer modulated activity of carbon-based electrocatalysts. Advanced Energy Materials, 2019, 10(11): 1901227
|
18 |
Miao Z, Meng J, Liang M, Li Z, Zhao Y, Wang F, Xu L, Mu J, Zhuo S, Zhou J. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2. Carbon, 2021, 172: 324–333
|
19 |
Zheng W, Guo C, Yang J, He F, Yang B, Li Z, Lei L, Xiao J, Wu G, Hou Y. Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon, 2019, 150: 52–59
|
20 |
Zhang S, Wu Q, Tang L, Hu Y, Wang M, Zhao J, Li M, Han J, Liu X, Wang H. Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Applied Materials & Interfaces, 2018, 10(46): 39757–39767
|
21 |
Niu Y, Zhang C, Wang Y, Fang D, Zhang L, Wang C. Confining chainmail-bearing Ni nanoparticles in N-doped carbon nanotubes for robust and efficient electroreduction of CO2. ChemSusChem, 2021, 14(4): 1140–1154
|
22 |
Daiyan R, Lu X, Tan X, Zhu X, Chen R, Smith S C, Amal R. Antipoisoning nickel-carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Applied Energy Materials, 2019, 2(11): 8002–8009
|
23 |
Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679
|
24 |
Deng J, Yu L, Deng D, Chen X, Yang F, Bao X. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(47): 14868
|
25 |
Xiang D, Bo X, Gao X, Zhang C, Du C, Zheng F, Zhuang Z, Li P, Zhu L, Chen W. Novel one-step synthesis of core@shell iron–nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. Journal of Power Sources, 2019, 438: 226988
|
26 |
Tu Y, Ren P, Deng D, Bao X. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy, 2018, 52: 494–500
|
27 |
Ou Y, Tian W, Liu L, Zhang Y, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(12): 5217–5228
|
28 |
Chen M, Zhao G, Shao L, Yuan Z, Jing Q, Huang K, Huang Z, Zhao X, Zou G. Controlled synthesis of nickel encapsulated into nitrogen-doped carbon nanotubes with covalent bonded interfaces: the structural and electronic modulation strategy for an efficient electrocatalyst in dye-sensitized solar cells. Chemistry of Materials, 2017, 29(22): 9680–9694
|
29 |
Chen L, Xu Z, Han W, Zhang Q, Bai Z, Chen Z, Li G, Wang X. Bimetallic CoNi alloy nanoparticles embedded in pomegranate-like nitrogen-doped carbon spheres for electrocatalytic oxygen reduction and evolution. ACS Applied Nano Materials, 2020, 3(2): 1354–1362
|
30 |
Xie Y, Feng C, Guo Y, Li S, Guo C, Zhang Y, Wang J. MOFs derived carbon nanotubes coated CoNi alloy nanocomposites with N-doped rich-defect and abundant cavity structure as efficient trifunctional electrocatalyst. Applied Surface Science, 2021, 536: 147786
|
31 |
Zhao J, Deng J, Han J, Imhanria S, Chen K, Wang W. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chemical Engineering Journal, 2020, 389: 124323
|
32 |
Yang L, Wang D, Lv Y, Cao D. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon, 2019, 144: 8–14
|
33 |
Shen Y, Zhou Y, Wang D, Wu X, Li J, Xi J. Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Advanced Energy Materials, 2018, 8(2): 1701759
|
34 |
Tong M, Wang L, Yu P, Liu X, Fu H. 3D network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12(3): 417–424
|
35 |
Li L, Huang Y, Li Y. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem, 2020, 2(1): 100024
|
36 |
Li G, Xu X, Yang B, Cao S, Wang X, Fu X, Shi Y, Yan Y, Song X, Hao C. Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochimica Acta, 2020, 331: 135375
|
37 |
Ma X, Chai H, Cao Y, Xu J, Wang Y, Dong H, Jia D, Zhou W. An effective bifunctional electrocatalysts: controlled growth of CoFe alloy nanoparticles supported on N-doped carbon nanotubes. Journal of Colloid and Interface Science, 2018, 514: 656–663
|
38 |
Wang Z, Ang J, Liu J, Ma X Y D, Kong J, Zhang Y, Yan T, Lu X. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Applied Catalysis B: Environmental, 2020, 263: 118344
|
39 |
Wu M, Guo B, Nie A, Liu R. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2020, 561: 585–592
|
40 |
Liu P, Gao D, Xiao W, Ma L, Sun K, Xi P, Xue D, Wang J. Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-air batteries. Advanced Functional Materials, 2018, 28(14): 1706928
|
41 |
Gao Z, Wang L, Chang J, Chen C, Wu D, Xu F, Jiang K. CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2017, 348: 158–167
|
42 |
Gebremariam T T, Chen F, Jin Y, Wang Q, Wang J, Wang J. Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn-air batteries and water splitting. Catalysis Science & Technology, 2019, 9(10): 2532–2542
|
43 |
Cui X, Ren P, Deng D, Deng J, Bao X. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science, 2016, 9(1): 123–129
|
44 |
Yang H B, Hung S, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H, Cai W, Chen R,
|
45 |
Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C,
|
46 |
Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
|
47 |
Pradeep C M, Samir K K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresource Technology, 2010, 101(13): 5013–5022
|
48 |
Wang Y, Niu C, Zhu Y, He D, Huang W. Tunable syngas formation from electrochemical CO2 reduction on copper nanowire arrays. ACS Applied Energy Materials, 2020, 3(10): 9841–9847
|
49 |
Zhang C, Liu J, Ye Y, Chen Q, Liang C. Encapsulation of Co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. Carbon, 2020, 156: 31–37
|
/
〈 | 〉 |