RESEARCH ARTICLE

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites

  • Jinian Yang , 1 ,
  • Xuesong Feng 1 ,
  • Shibin Nie , 2 ,
  • Yuxuan Xu 2 ,
  • Zhenyu Li 1
Expand
  • 1. School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • 2. School of Safety Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

Received date: 03 Apr 2021

Accepted date: 21 May 2021

Published date: 15 Apr 2022

Copyright

2021 Higher Education Press

Abstract

The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

Cite this article

Jinian Yang , Xuesong Feng , Shibin Nie , Yuxuan Xu , Zhenyu Li . Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(4) : 484 -497 . DOI: 10.1007/s11705-021-2074-6

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51775001), Anhui Province Natural Science Foundation (Grant No. 1908085J20), University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2019-027) and the Leading Talents Project in Colleges and Universities of Anhui Province.
1
Sasidharan S, Anand A. Epoxy-based hybrid structural composites with nanofillers: a review. Industrial & Engineering Chemistry Research, 2020, 59(28): 12617–12631

DOI

2
Wei H Y, Xia J, Zhou W L, Zhou L S, Hussain G, Li Q, Ostrikov K. Adhesion and cohesion of epoxy-based industrial composite coatings. Composites. Part B, Engineering, 2020, 193: 108035

DOI

3
Chang L, Zhang Z, Ye L, Friedrich K. Tribological properties of epoxy nanocomposites: III. Characteristics of transfer films. Wear, 2007, 262(5): 699–706

DOI

4
Yu J, Zhao W, Wu Y, Wang D, Feng R. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Applied Surface Science, 2018, 434: 1311–1320

DOI

5
Azeez A A, Rhee K Y, Park S J, Hui D. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45(1): 308–320

DOI

6
Yang J N, Li Z Y, Xu Y X, Nie S B, Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27(9): 274

DOI

7
Bazrgari D, Moztarzadeh F, Sabbagh-Alvani A A, Rasoulianboroujeni M, Tahriri M, Tayebi L. Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics International, 2018, 44(1): 1220–1224

DOI

8
Sakka M M, Antar Z, Elleuch K, Feller J F. Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes. Friction, 2017, 5(2): 171–182

DOI

9
Kumar A, Bag D S, Tiwari R K, Tripathi D N, Prasad N E. Copper nanoparticles filled epoxy nanocomposites and their mechanical properties. Journal of Polymer Materials, 2016, 33(3): 419–429

10
Nie S, Jin D, Xu Y, Han C, Dong X, Yang J. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9(5): 10189–10197

DOI

11
Liu J, Yuen R K K, Hong N, Hu Y. The influence of mesoporous SiO2-graphene hybrid improved the flame retardancy of epoxy resins. Polymers for Advanced Technologies, 2018, 29(5): 1478–1486

DOI

12
Qiu S, Hu Y, Shi Y, Hou Y, Kan Y, Chu F, Sheng H, Yuen R K K, Xing W. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114: 407–417

DOI

13
Yang Q, Liu L, Hui D, Chipara M. Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites. Composites. Part B, Engineering, 2016, 87: 256–262

DOI

14
Wu F, Zhao W, Chen H, Zeng Z, Wu X, Xue Q. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49(2): 85–92

DOI

15
Chen J, Yang J, Chen B, Liu S, Dong J, Li C. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305(305): 23–28

DOI

16
Burattin P, Che M, Louis C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074

DOI

17
Mizutani T, Fukushima Y, Okada A, Kamigaito O. Synthesis of nickel and magnesium phyllosilicates with 1:1 and 2:1 layer structures. Bulletin of the Chemical Society of Japan, 1990, 63(7): 2094–2098

DOI

18
Nares R, Ramírez J, Gutiérrez-Alejandre A, Louis C, Klimova T. Ni/Hβ-zeolite catalysts prepared by deposition-precipitation. Journal of Physical Chemistry B, 2002, 106(51): 13287–13293

DOI

19
Nares R, Ramírez J, Gutiérrez-Alejandre A, Cuevas R. Characterization and hydrogenation activity of Ni/Si(Al)-MCM-41 catalysts prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 2009, 48(3): 1154–1162

DOI

20
Fang Q, Xuan S, Jiang W, Gong X. Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells. Advanced Functional Materials, 2011, 21(10): 1902–1909

DOI

21
Zhang C, Yue H, Huang Z, Li S, Wu G, Ma X, Gong J. Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 161–173

DOI

22
Gui C, Hao S, Liu Y, Qu J, Yang C, Yu Y, Wang Q, Yu Z. Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16551–16559

DOI

23
Qiu C, Ai L H, Jiang J. Layered phosphate-incorporated nickel-cobalt hydrosilicates for highly efficient oxygen evolution electrocatalysis. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4492–4498

DOI

24
Jian G, Meng Q, Jiao Y, Meng F, Cao Y, Wu M. Enhanced performances of triboelectric nanogenerators by filling hierarchical flower-like TiO2 particles into polymethyl methacrylate film. Nanoscale, 2020, 12(26): 14160–14170

DOI

25
Ma X Y, Zhang W D. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94(7): 1103–1109

DOI

26
Xu N, Hu L, Zhang Q, Xiao X, Yang H, Yu E. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Applied Materials & Interfaces, 2015, 7(49): 27373–27381

DOI

27
Fukushima Y, Tani M. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69(12): 3667–3671

DOI

28
Ohtsuka K, Koga J, Suda M, Ono M. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surfacenucleated precipitation route. Journal of the American Ceramic Society, 1989, 72(10): 1924–1930

DOI

29
Gui C X, Wang Q Q, Hao S M, Qu J, Huang P P, Cao C Y, Song W G, Yu Z Z. Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb2+ and methylene blue adsorption. ACS Applied Materials & Interfaces, 2014, 6(16): 14653–14659

DOI

30
Chabrol K, Gressier M, Pebere N, Menu M J, Martin F, Bonino J P, Marichal C, Brendle J. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. Journal of Materials Chemistry, 2010, 20(43): 9695–9706

DOI

31
Yamini S, Young R J. Crack propagation in and fractography of epoxy resins. Journal of Materials Science, 1979, 14(7): 1609–1618

DOI

32
Yamini S, Young R J. Stability of crack propagation in epoxy resins. Polymer, 1977, 18(10): 1075–1080

DOI

33
Chen X, Wang L, Shi J, Shi H, Liu Y. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE. Polymers & Polymer Composites, 2010, 18(3): 145–152

DOI

34
Yasmin A, Abot J L, Daniel I M. Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia, 2003, 49(1): 81–86

DOI

35
Wu C L, Zhang M Q, Rong M Z, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62(10): 1327–1340

DOI

36
Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer, 2001, 42(25): 10013–10019

DOI

37
Zhao C X, Zhang W D. Preparation of waterborne polyurethane nanocomposites: polymerization from functionalized hydroxyapatite. European Polymer Journal, 2008, 44(7): 1988–1995

DOI

38
Zhou K, Liu J, Shi Y, Jiang S, Wang D, Hu Y, Gui Z. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Applied Materials & Interfaces, 2015, 7(11): 6070–6081

DOI

39
Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16): 6515–6530

DOI

40
Myshkin N, Kovalev A. Adhesion and surface forces in polymer tribology: a review. Friction, 2018, 6(2): 143–155

DOI

41
Gupta S, Hammann T, Johnson R, Riyad M F. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58(3): 560–566

DOI

42
Baptista R, Mendão A, Rodrigues F, Figueiredo-Pina C, Guedes M, Marat-Mendes R. Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theoretical and Applied Fracture Mechanics, 2016, 85: 113–124

DOI

43
Nosonovsky M, Mortazavi V. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact. 1st ed. Boca Raton, FL: CSC Press, 2018

44
Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports, 2009, 63(2): 31–80

DOI

45
Chen W X, Tu J P, Wang L Y, Gan H Y, Xu Z D, Zhang X B. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon, 2003, 41(2): 215–222

DOI

46
Fei J, Luo D, Wang H, Li H, Huang J, Luo W, Duan X. Effect of nano-SiO2 particles on the carbon fabric/resin friction materials by microwave-hydrothermal treatment. Journal of Composite Materials, 2017, 52(2): 245–252

DOI

47
Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chemistry of Materials, 1990, 2(2): 186–191

DOI

48
Mathieu H J, Landolt D. An investigation of thin oxide films thermally grown in situ on Fe24Cr and Fe24Cr11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corrosion Science, 1986, 26(7): 547–559

DOI

49
Dedryvère R, Maccario M, Croguennec L, Le Cras F, Delmas C, Gonbeau D. X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chemistry of Materials, 2008, 20(22): 7164–7170

DOI

50
Hawn D D, DeKoven B M. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis, 1987, 10(2-3): 63–74

DOI

Outlines

/