RESEARCH ARTICLE

Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

  • Katarína Gáborová 1,2 ,
  • Marcela Achimovičová , 1 ,
  • Michal Hegedüs 3 ,
  • Vladimír Girman 4 ,
  • Mária Kaňuchová 5 ,
  • Erika Dutková 1
Expand
  • 1. Institute of Geotechnics, Slovak Academy of Sciences, Košice 04001, Slovakia
  • 2. Institute of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University, Košice 04201, Slovakia
  • 3. Synthon, s.r.o., Blansko 67801, Czech Republic
  • 4. Faculty of Science, Pavol Jozef Šafárik University, Košice 04154, Slovakia
  • 5. Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University, Košice 04200, Slovakia

Received date: 02 Feb 2021

Accepted date: 23 Apr 2021

Published date: 15 Mar 2022

Copyright

2021 Higher Education Press

Abstract

Copper(I) selenide-nanocrystalline semiconductor was synthesized via one-step mechanochemical synthesis after 5 min milling in a planetary ball mill. The kinetics of synthesis was followed by X-ray powder diffraction analysis and specific surface area measurements of milled 2Cu/Se mixtures. The X-ray diffraction confirmed the orthorhombic crystal structure of Cu2Se with the crystallite size ~25 nm. The surface chemical structure was studied by X-ray photoelectron spectroscopy, whereby the binding energy of the Cu 2p and Se 3d signals corresponded to Cu+ and Se2– oxidation states. Transmission electron microscopy revealed agglomerated nanocrystals and confirmed their orthorhombic structure, as well. The optical properties were studied utilizing ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The direct bandgap energy 3.7 eV indicated a blue-shift phenomenon due to the quantum size effect. This type of Cu2Se synthesis can be easily adapted to production dimensions using an industrial vibratory mill. The advantages of mechanochemical synthesis represent the potential for inexpensive, environmentally-friendly, and waste-free manufacturing of Cu2Se.

Cite this article

Katarína Gáborová , Marcela Achimovičová , Michal Hegedüs , Vladimír Girman , Mária Kaňuchová , Erika Dutková . Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(3) : 433 -442 . DOI: 10.1007/s11705-021-2066-6

Acknowledgements

This work was realized within the frame of the project “Research Centre of Advanced Materials and Technologies for Recent and Future Applications PROMATECH”, ITMS 26220220186, supported by the Operational Program “Research and Development” financed through European Regional Development Fund, Slovak Research and Development Agency under the contract No. APVV-18-0357, and by the Slovak Grant Agency VEGA (projects 02/0065/18, 02/0103/20). We would like to thank Professor J. Briančin for SEM observations, and the native speaker Mrs. Ch. Dejanakul-Wolfe for the formal text revision.
1
Heydin R D, Murray R M. The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry, 1976, 54(6): 841–848

DOI

2
Butt S, Farooq M, Mahmood W, Salam S, Sultan M, Basit M, Ma J, Lin Y, Nan C. One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786: 557–564

DOI

3
Gulay L, Daszkiewicz M, Strok O, Pietraszko A. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011, 4(3/4): 200–205

DOI

4
Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T. Discovery of colossal Seebeck effect in metallic Cu2Se. Nature Communications, 2019, 10(1): 72

DOI

5
Liu K, Liu H, Wang J, Shi L J. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. Journal of Alloys and Compounds, 2009, 484(1-2): 674–676

DOI

6
Han X, Liao F, Zhang Y, Yuan Z, Chen H, Xu C. CTAB-assisted hydrothermal synthesis of Cu2Se films composed of nanowire networks. Materials Letters, 2018, 210: 62–65

DOI

7
Hsiang H, Hsu W, Lu L, Chang Y, Yen F. Cuprous selenide nano-crystal synthesis and characterization. Materials Research Bulletin, 2013, 48(2): 715–720

DOI

8
Jia F, Zhang S, Zhang X, Peng X, Zhang H, Xiang Y. Sb-triggered β-to-α transition: solvothermal synthesis of metastable alpha-Cu2Se. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(48): 15941–15946

DOI

9
Zhao Y, Zhu L, Jiang Y, Xie H, Zhang G, Ba N. Microphone shaped Cu2Se micro/nanoarchitecture: preparation, formation mechanism and optical property. Materials Letters, 2015, 147: 82–84

DOI

10
Eikeland E, Blichfeld A, Borup K, Zhao K, Overgaard J, Shi X, Chen L, Iversen B. Crystal structure across the beta to alpha phase transition in thermoelectric Cu2−xSe. Journal of Applied Crystallography, 2017, 4: 476–485

11
Xu S, Wang H, Zhu J, Chen H. Sonochemical synthesis of copper selenides nanocrystals with different phases. Journal of Crystal Growth, 2002, 234(1): 263–266

DOI

12
Kaur H, Kaur J, Singh L, Singh S. Electrochemical synthesis and characterization of Cu2Se nanowires. Superlattices and Microstructures, 2013, 64: 294–302

DOI

13
Yang C, Hsiang H, Tu J. Copper selenide crystallites synthesized using the hot-injection process. Advanced Powder Technology, 2016, 27(3): 959–963

DOI

14
Yang C, Hsiang H. Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process. Materials Research Bulletin, 2018, 97: 30–36

DOI

15
Su Y, Li G, Guo Z, Li Y Y, Li Y X, Huang X J, Liu J H. Cation-exchange synthesis of Cu2Se nanobelts and thermal conversion to porous CuO nanobelts with highly selective sensing toward H2S. ACS Applied Nano Materials, 2018, 1(1): 245–253

DOI

16
Bulat L, Osvenskii V, Ivanov A, Sorokin A, Pshenay-Severin D, Bublik V, Tabachkova N, Panchenko V, Lavrentev M. Experimental and theoretical study of the thermoelectric properties of copper selenide. Semiconductors, 2017, 51(7): 854–857

DOI

17
Ivanov A, Sorokin A, Panchenko V, Tarasova I, Tabachkova N, Bublik V, Akchurin R. Structure of the Cu2Se compound produced by different methods. Semiconductors, 2017, 51(7): 866–869

DOI

18
Li J, Liu G, Wu X, He G, Yang Z, Li J. Reaction mechanism in mechanochemical synthesis of Cu2−xSe. Ceramics International, 2018, 44(18): 22172–22175

DOI

19
Stevels A, Jellinek F. Phase transitions in copper chalcogenides: 1. Copper-selenium system. Recueil Des Travaux Chimiques Des Pays-Bas, 1971, 90(3): 273–283

DOI

20
Lévy-Clément C, Neumann-Spallart M, Haram S, Santhanam K. Chemical bath deposition of cubic copper(I) selenide and its room temperature transformation to the orthorhombic phase. Thin Solid Films, 1997, 302(1-2): 12–16

DOI

21
Kopp O, Cavin O. Hydrothermal growth of single-crystal Cu2Se (Berzelianite). Journal of Crystal Growth, 1984, 67(2): 391–392

DOI

22
Haram S, Santhanam K, Neumann-Spallart M, Lévy-Clément C. Electroless deposition on copper substrates and characterization of thin-films of copper(I) selenide. Materials Research Bulletin, 1992, 27(10): 1185–1191

DOI

23
Baláž M, Zorkovská A, Urakaev F, Baláž P, Briančin J, Bujňáková Z, Achimovičová M, Gock E. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842

DOI

24
Achimovičová M, Daneu N, Rečnik A, Ďurišin J, Peter B, Fabián M, Kováč J, Šatka A. Characterization of mechanochemically synthesized lead selenide. Chemical Papers, 2009, 63(5): 562–567

DOI

25
Achimovičová M, Baláž P, Ohtani T, Kostova N, Tyuliev G, Feldhoff A, Šepelák V. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill. Solid State Ionics, 2011, 192(1): 632–637

DOI

26
Achimovičová M, Gotor F, Real C, Daneu N. Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. Journal of Materials Science Materials in Electronics, 2012, 23(10): 1844–1850

DOI

27
Achimovičová M, Daneu N, Tóthová E, Mazaj M, Dutková E. Combined mechanochemical/thermal annealing approach for the synthesis of Co9Se8 with potential optical properties. Applied Physics. A, Materials Science & Processing, 2019, 125(1): 8

DOI

28
Zhu L, Xie H, Liu Y, Chen D, Bian M, Zheng W. Novel ultralong hollow hyperbranched Cu2−xSe with nanosheets hierarchical structure: preparation, formation mechanism and properties. Journal of Alloys and Compounds, 2019, 802: 430–436

DOI

29
Riha S, Johnson D, Prieto A. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. Journal of the American Chemical Society, 2011, 133(5): 1383–1390

DOI

30
Baláž M, Dutková E, Bujňáková Z, Tóthová E, Kostova N, Karakirova Y, Briančin J, Kaňuchová M. Mechanochemistry of copper sulfides: characterization, surface oxidation and photocatalytic activity. Journal of Alloys and Compounds, 2018, 746: 576–582

DOI

31
Hegedüs M, Baláž M, Tešinský M, Sayagues M, Siffalovic P, Kruľaková M, Kaňuchová M, Briančin J, Fabián M, Baláž P. Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors. Journal of Alloys and Compounds, 2018, 768: 1006–1015

DOI

32
Tufts B J, Abrahams I L, Caley C E, Lunt S R, Miskelly G M, Sailor M J, Santangelo P G, Lewis N S, Roe A L, Hodgson A O. XPS and EXAFS studies of the reactions of Co(III) ammine complexes with GAAS-surfaces. Journal of the American Chemical Society, 1990, 112(13): 5123–5136

DOI

33
Theye M L, Gheorghiu A, Senemaud C H, Kotkata M F, Kandil K. Studies of short-range order in amorphous GexSe100−x compounds by X-ray photoelectron spectroscopy. Philosophical Magazine B, Physics of Condensed Matter. Structural, Electronic, Optical and Magnetic Properties, 1994, 69: 209–222

34
Zyoud A, Murtada K, Kwon H, Choi H, Kim T, Helal M, Faroun M, Bsharat H, Park D, Hilal H. Copper selenide film electrodes prepared by combined electrochemical/chemical bath depositions with high photo-electrochemical conversion efficiency and stability. Solid State Sciences, 2018, 75: 53–62

DOI

35
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, Basic Research, 1966, 15(2): 627–637

DOI

36
Gurin V, Alexeenko A, Zolotovskaya S, Yumashev K. Copper and copper selenide nanoparticles in the sol-gel matrices: structural and optical. Materials Science and Engineering C, 2006, 26(5-7): 952–955

DOI

37
Sakr G B, Yahia I S, Fadel M, Fouad S S, Romčevic N. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. Journal of Alloys and Compounds, 2010, 507(2): 557–562

DOI

38
Petrovic M, Gilic M, Cirkovic J, Romčevic M, Romčevic N, Trajic J, Yahia I S. Optical properties of CuSe thin films—band gap determination. Science of Sintering, 2017, 49(2): 167–174

DOI

Outlines

/