Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková

PDF(1586 KB)
PDF(1586 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (3) : 433-442. DOI: 10.1007/s11705-021-2066-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

Author information +
History +

Abstract

Copper(I) selenide-nanocrystalline semiconductor was synthesized via one-step mechanochemical synthesis after 5 min milling in a planetary ball mill. The kinetics of synthesis was followed by X-ray powder diffraction analysis and specific surface area measurements of milled 2Cu/Se mixtures. The X-ray diffraction confirmed the orthorhombic crystal structure of Cu2Se with the crystallite size ~25 nm. The surface chemical structure was studied by X-ray photoelectron spectroscopy, whereby the binding energy of the Cu 2p and Se 3d signals corresponded to Cu+ and Se2– oxidation states. Transmission electron microscopy revealed agglomerated nanocrystals and confirmed their orthorhombic structure, as well. The optical properties were studied utilizing ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The direct bandgap energy 3.7 eV indicated a blue-shift phenomenon due to the quantum size effect. This type of Cu2Se synthesis can be easily adapted to production dimensions using an industrial vibratory mill. The advantages of mechanochemical synthesis represent the potential for inexpensive, environmentally-friendly, and waste-free manufacturing of Cu2Se.

Graphical abstract

Keywords

Cu2Se / berzelianite / nanocrystalline semiconductor / mechanochemical synthesis / planetary ball mill

Cite this article

Download citation ▾
Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties. Front. Chem. Sci. Eng., 2022, 16(3): 433‒442 https://doi.org/10.1007/s11705-021-2066-6

References

[1]
Heydin R D, Murray R M. The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2, and CuSe2II. Canadian Journal of Chemistry, 1976, 54(6): 841–848
CrossRef Google scholar
[2]
Butt S, Farooq M, Mahmood W, Salam S, Sultan M, Basit M, Ma J, Lin Y, Nan C. One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786: 557–564
CrossRef Google scholar
[3]
Gulay L, Daszkiewicz M, Strok O, Pietraszko A. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011, 4(3/4): 200–205
CrossRef Google scholar
[4]
Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T. Discovery of colossal Seebeck effect in metallic Cu2Se. Nature Communications, 2019, 10(1): 72
CrossRef Google scholar
[5]
Liu K, Liu H, Wang J, Shi L J. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. Journal of Alloys and Compounds, 2009, 484(1-2): 674–676
CrossRef Google scholar
[6]
Han X, Liao F, Zhang Y, Yuan Z, Chen H, Xu C. CTAB-assisted hydrothermal synthesis of Cu2Se films composed of nanowire networks. Materials Letters, 2018, 210: 62–65
CrossRef Google scholar
[7]
Hsiang H, Hsu W, Lu L, Chang Y, Yen F. Cuprous selenide nano-crystal synthesis and characterization. Materials Research Bulletin, 2013, 48(2): 715–720
CrossRef Google scholar
[8]
Jia F, Zhang S, Zhang X, Peng X, Zhang H, Xiang Y. Sb-triggered β-to-α transition: solvothermal synthesis of metastable alpha-Cu2Se. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(48): 15941–15946
CrossRef Google scholar
[9]
Zhao Y, Zhu L, Jiang Y, Xie H, Zhang G, Ba N. Microphone shaped Cu2Se micro/nanoarchitecture: preparation, formation mechanism and optical property. Materials Letters, 2015, 147: 82–84
CrossRef Google scholar
[10]
Eikeland E, Blichfeld A, Borup K, Zhao K, Overgaard J, Shi X, Chen L, Iversen B. Crystal structure across the beta to alpha phase transition in thermoelectric Cu2−xSe. Journal of Applied Crystallography, 2017, 4: 476–485
[11]
Xu S, Wang H, Zhu J, Chen H. Sonochemical synthesis of copper selenides nanocrystals with different phases. Journal of Crystal Growth, 2002, 234(1): 263–266
CrossRef Google scholar
[12]
Kaur H, Kaur J, Singh L, Singh S. Electrochemical synthesis and characterization of Cu2Se nanowires. Superlattices and Microstructures, 2013, 64: 294–302
CrossRef Google scholar
[13]
Yang C, Hsiang H, Tu J. Copper selenide crystallites synthesized using the hot-injection process. Advanced Powder Technology, 2016, 27(3): 959–963
CrossRef Google scholar
[14]
Yang C, Hsiang H. Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process. Materials Research Bulletin, 2018, 97: 30–36
CrossRef Google scholar
[15]
Su Y, Li G, Guo Z, Li Y Y, Li Y X, Huang X J, Liu J H. Cation-exchange synthesis of Cu2Se nanobelts and thermal conversion to porous CuO nanobelts with highly selective sensing toward H2S. ACS Applied Nano Materials, 2018, 1(1): 245–253
CrossRef Google scholar
[16]
Bulat L, Osvenskii V, Ivanov A, Sorokin A, Pshenay-Severin D, Bublik V, Tabachkova N, Panchenko V, Lavrentev M. Experimental and theoretical study of the thermoelectric properties of copper selenide. Semiconductors, 2017, 51(7): 854–857
CrossRef Google scholar
[17]
Ivanov A, Sorokin A, Panchenko V, Tarasova I, Tabachkova N, Bublik V, Akchurin R. Structure of the Cu2Se compound produced by different methods. Semiconductors, 2017, 51(7): 866–869
CrossRef Google scholar
[18]
Li J, Liu G, Wu X, He G, Yang Z, Li J. Reaction mechanism in mechanochemical synthesis of Cu2−xSe. Ceramics International, 2018, 44(18): 22172–22175
CrossRef Google scholar
[19]
Stevels A, Jellinek F. Phase transitions in copper chalcogenides: 1. Copper-selenium system. Recueil Des Travaux Chimiques Des Pays-Bas, 1971, 90(3): 273–283
CrossRef Google scholar
[20]
Lévy-Clément C, Neumann-Spallart M, Haram S, Santhanam K. Chemical bath deposition of cubic copper(I) selenide and its room temperature transformation to the orthorhombic phase. Thin Solid Films, 1997, 302(1-2): 12–16
CrossRef Google scholar
[21]
Kopp O, Cavin O. Hydrothermal growth of single-crystal Cu2Se (Berzelianite). Journal of Crystal Growth, 1984, 67(2): 391–392
CrossRef Google scholar
[22]
Haram S, Santhanam K, Neumann-Spallart M, Lévy-Clément C. Electroless deposition on copper substrates and characterization of thin-films of copper(I) selenide. Materials Research Bulletin, 1992, 27(10): 1185–1191
CrossRef Google scholar
[23]
Baláž M, Zorkovská A, Urakaev F, Baláž P, Briančin J, Bujňáková Z, Achimovičová M, Gock E. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842
CrossRef Google scholar
[24]
Achimovičová M, Daneu N, Rečnik A, Ďurišin J, Peter B, Fabián M, Kováč J, Šatka A. Characterization of mechanochemically synthesized lead selenide. Chemical Papers, 2009, 63(5): 562–567
CrossRef Google scholar
[25]
Achimovičová M, Baláž P, Ohtani T, Kostova N, Tyuliev G, Feldhoff A, Šepelák V. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill. Solid State Ionics, 2011, 192(1): 632–637
CrossRef Google scholar
[26]
Achimovičová M, Gotor F, Real C, Daneu N. Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. Journal of Materials Science Materials in Electronics, 2012, 23(10): 1844–1850
CrossRef Google scholar
[27]
Achimovičová M, Daneu N, Tóthová E, Mazaj M, Dutková E. Combined mechanochemical/thermal annealing approach for the synthesis of Co9Se8 with potential optical properties. Applied Physics. A, Materials Science & Processing, 2019, 125(1): 8
CrossRef Google scholar
[28]
Zhu L, Xie H, Liu Y, Chen D, Bian M, Zheng W. Novel ultralong hollow hyperbranched Cu2−xSe with nanosheets hierarchical structure: preparation, formation mechanism and properties. Journal of Alloys and Compounds, 2019, 802: 430–436
CrossRef Google scholar
[29]
Riha S, Johnson D, Prieto A. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. Journal of the American Chemical Society, 2011, 133(5): 1383–1390
CrossRef Google scholar
[30]
Baláž M, Dutková E, Bujňáková Z, Tóthová E, Kostova N, Karakirova Y, Briančin J, Kaňuchová M. Mechanochemistry of copper sulfides: characterization, surface oxidation and photocatalytic activity. Journal of Alloys and Compounds, 2018, 746: 576–582
CrossRef Google scholar
[31]
Hegedüs M, Baláž M, Tešinský M, Sayagues M, Siffalovic P, Kruľaková M, Kaňuchová M, Briančin J, Fabián M, Baláž P. Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors. Journal of Alloys and Compounds, 2018, 768: 1006–1015
CrossRef Google scholar
[32]
Tufts B J, Abrahams I L, Caley C E, Lunt S R, Miskelly G M, Sailor M J, Santangelo P G, Lewis N S, Roe A L, Hodgson A O. XPS and EXAFS studies of the reactions of Co(III) ammine complexes with GAAS-surfaces. Journal of the American Chemical Society, 1990, 112(13): 5123–5136
CrossRef Google scholar
[33]
Theye M L, Gheorghiu A, Senemaud C H, Kotkata M F, Kandil K. Studies of short-range order in amorphous GexSe100−x compounds by X-ray photoelectron spectroscopy. Philosophical Magazine B, Physics of Condensed Matter. Structural, Electronic, Optical and Magnetic Properties, 1994, 69: 209–222
[34]
Zyoud A, Murtada K, Kwon H, Choi H, Kim T, Helal M, Faroun M, Bsharat H, Park D, Hilal H. Copper selenide film electrodes prepared by combined electrochemical/chemical bath depositions with high photo-electrochemical conversion efficiency and stability. Solid State Sciences, 2018, 75: 53–62
CrossRef Google scholar
[35]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, Basic Research, 1966, 15(2): 627–637
CrossRef Google scholar
[36]
Gurin V, Alexeenko A, Zolotovskaya S, Yumashev K. Copper and copper selenide nanoparticles in the sol-gel matrices: structural and optical. Materials Science and Engineering C, 2006, 26(5-7): 952–955
CrossRef Google scholar
[37]
Sakr G B, Yahia I S, Fadel M, Fouad S S, Romčevic N. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. Journal of Alloys and Compounds, 2010, 507(2): 557–562
CrossRef Google scholar
[38]
Petrovic M, Gilic M, Cirkovic J, Romčevic M, Romčevic N, Trajic J, Yahia I S. Optical properties of CuSe thin films—band gap determination. Science of Sintering, 2017, 49(2): 167–174
CrossRef Google scholar

Acknowledgements

This work was realized within the frame of the project “Research Centre of Advanced Materials and Technologies for Recent and Future Applications PROMATECH”, ITMS 26220220186, supported by the Operational Program “Research and Development” financed through European Regional Development Fund, Slovak Research and Development Agency under the contract No. APVV-18-0357, and by the Slovak Grant Agency VEGA (projects 02/0065/18, 02/0103/20). We would like to thank Professor J. Briančin for SEM observations, and the native speaker Mrs. Ch. Dejanakul-Wolfe for the formal text revision.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1586 KB)

Accesses

Citations

Detail

Sections
Recommended

/