RESEARCH ARTICLE

Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors

  • Wei Wang 1 ,
  • Haijun Lv 1 ,
  • Juan Du , 1 ,
  • Aibing Chen , 1,2
Expand
  • 1. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • 2. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

Received date: 16 Jul 2020

Accepted date: 12 Nov 2020

Published date: 15 Oct 2021

Copyright

2021 Higher Education Press

Abstract

In this present work, N-doped carbon nanobelts (N-CNBs) were prepared by a confined-pyrolysis approach and the N-CNBs were derived from a polypyrrole (Ppy) tube coated with a compact silica layer. The silica layer provided a confined space for the Ppy pyrolysis, thereby hindering the rapid overflow of pyrolysis gas, which is the activator for the formation of carbonaceous materials. At the same time, the confined environment can activate the carbon shell to create a thin wall and strip the carbon tube into belt morphology. This process of confined pyrolysis realizes self-activation during the pyrolysis of Ppy to obtain the carbon nanobelts without adding any additional activator, which reduces pollution and preparation cost. In addition, this approach is simple to operate and avoids the disadvantages of other methods that consume time and materials. The as-prepared N-CNB shows cross-linked nanobelt morphology and a rich porous structure with a large specific surface area. As supercapacitor electrode materials, the N-CNB can present abundant active sites, and exhibits a specific capacitance of 246 F·g1, and excellent ability with 95.44% retention after 10000 cycles. This indicates that the N-CNB is an ideal candidate as a supercapacitor electrode material.

Cite this article

Wei Wang , Haijun Lv , Juan Du , Aibing Chen . Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(5) : 1312 -1321 . DOI: 10.1007/s11705-020-2033-7

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 21676070), Hebei Province Introduction of Foreign Intelligence Projects (2018), Beijing National Laboratory for Molecular Sciences, Hebei Science and Technology Project (Grant Nos. 20544401D and 20314401D), Tianjin Science and Technology Project (Grant No. 19YFSLQY00070), CAS Key Laboratory of Carbon Materials (Grant No. KLCMKFJJ2007), Hebei Province 2020 Central Leading Local Science and Technology Development Fund Project (Grant No. 206Z4406G).
1
Ma F X, Yu L, Xu C Y, Lou X W. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy & Environmental Science, 2016, 9(3): 862–866

DOI

2
Ouyang T, Cheng K, Yang F, Zhou L, Zhu K, Ye K, Wang G, Cao D. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14551–14561

DOI

3
Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Advanced Materials, 2017, 29(7): 1604167.1–1604167.8

4
Lin T, Chen I W, Liu F, Yang C, Bi H, Xu F, Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350(6267): 1508–1513

DOI

5
Wu D, Li Z, Zhong M, Kowalewski T, Matyjaszewski K. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. Angewandte Chemie International Edition, 2014, 53(15): 3957–3960

DOI

6
Park W I, Yi G, Kim M Y, Pennycook S J. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Advanced Materials, 2002, 14(24): 1841–1843

DOI

7
Chen D, Ye J H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chemistry of Materials, 2009, 21(11): 2327–2333

DOI

8
Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong C P, Wang Z L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Letters, 2014, 14(2): 731–736

DOI

9
Feng X J, Shankar K, Varghese O K, Paulose M, Latempa T J, Grimes C A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Letters, 2008, 8(11): 3781–3786

DOI

10
Yu X, Yang S, Zhang B, Shao D, Dong X, Fang Y, Li Z, Wang H. Controlled synthesis of SnO2@carbon core-shell nanochains as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(33): 12295–12302

DOI

11
Zou J, Tu W, Zeng S Z, Yao Y, Zhang Q, Wu H, Lan T, Liu S, Zeng X. High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure. Dalton Transactions (Cambridge, England), 2019, 48(16): 5271–5284

DOI

12
Su C C, Pei C J, Wu B X, Qian J F, Tan Y W. Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small, 2017, 13(29): 1700834

DOI

13
Qi X S, Yang Y, Zhong W, Qin C, Deng Y, Au C, Du Y W. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption. Carbon, 2010, 48(12): 3512–3522

DOI

14
Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

DOI

15
Pachfule P, Shinde D, Majumder M, Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nature Chemistry, 2016, 8(7): 718–724

DOI

16
Elías A L, Botello-Méndez A R, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L J, Muñoz-Sandoval E, Ajayan P M, Terrones H, Terrones M. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Letters, 2010, 10(2): 366–372

DOI

17
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876

DOI

18
Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, Espinosa-González C G, Tristán-López F, Ramírez-González D, Cullen D A, Smith D J, Terrones M, Vega-Cantú Y I. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters, 2009, 9(4): 1527–1533

DOI

19
Zheng C, Zhou X F, Cao H L, Wang G H, Liu Z P. Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(20): 7484

DOI

20
Molina-Sabio M, Gonzalez M T, Rodriguez-Reinoso F, Sepúlveda-Escribano A. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon, 1996, 34(4): 505–509

DOI

21
Fukuyama H, Terai S. Preparing and characterizing the active carbon produced by steam and carbon dioxide as a heavy oil hydrocracking catalyst support. Catalysis Today, 2008, 130(2-4): 382–388

DOI

22
Xu Y, Zhang C L, Zhou M, Fu Q, Zhao C X, Wu M H, Lei Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications, 2018, 9(1): 1720

DOI

23
Toles C A, Marshall W E, Wartelle L H, McAloon A. Steam- or carbon dioxide-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 2000, 75(3): 197–203

DOI

24
Yang L, Huang T, Jiang X, Jiang W J. Effect of steam and CO2 activation on characteristics and desulfurization performance of pyrolusite modified activated carbon. Adsorption, 2016, 22(8): 1099–1107

DOI

25
Wang Z H, Xiong X Q, Qie L, Huang Y H. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106: 320–326

DOI

26
Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q. High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9311–9318

DOI

27
Cheng P, Li T, Yu H, Zhi L, Liu Z H, Lei Z B. Biomass-derived carbon fiber aerogel as binder-free electrode for high-rate supercapacitor. Journal of Physical Chemistry C, 2016, 120(4): 2079–2086

DOI

28
Chen L F, Huang Z H, Liang H W, Gao H L, Yu S H. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Advanced Functional Materials, 2014, 24(32): 5104–5111

DOI

29
Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4): 1963–1970

DOI

30
Ren J, Li L, Chen C, Chen X L, Cai Z B, Qiu L B, Wang Y G, Zhu X R, Peng H S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Advanced Materials, 2013, 25(8): 1155–1159

DOI

31
Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry, 2010, 20(20): 4223–4230

DOI

32
Tai Z X, Yan X B, Lang J W, Xue Q J. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. Journal of Power Sources, 2012, 199: 373–378

DOI

33
Islam M S, Deng Y, Tong L, Faisal S N, Roy A K, Minett A I, Gomes V G. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon, 2016, 96: 701–710

DOI

34
Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy A K. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chemistry of Materials, 2011, 23(21): 4810–4816

DOI

35
Yan Z, Ma L L, Zhu Y, Lahiri I, Hahm M G, Liu Z, Yang S B, Xiang C S, Lu W, Peng Z W, Sun Z, Kittrell C, Lou J, Choi W, Ajayan P M, Tour J M. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials. ACS Nano, 2013, 7(1): 58–64

DOI

36
Perera S D, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris J P, Chabal Y J, Jr Balkus K J. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Advanced Energy Materials, 2011, 1(5): 1–10

DOI

37
Subramanian V, Luo C, Stephan A M, Nahm K S, Thomas S, Wei B. Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C, 2007, 111(20): 7527–7531

DOI

38
Barranco V, Lillo Rodenas M A, Linares Solano A, Oya A, Pico F, Ibanez J, Agullo-Rueda F, Amarilla J M, Rojo J M. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. Journal of Physical Chemistry C, 2010, 114(22): 10302–10307

DOI

39
Ra E J, Raymundo-Piñero E, Lee Y H, Béguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 2009, 47(13): 2984–2992

DOI

40
Xing W, Qiao S Z, Ding R G, Li F, Lu G Q, Yan Z F, Cheng H M. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 2006, 44(2): 216–224

DOI

41
Mao B S, Wen Z, Bo Z, Chang J, Huang X, Chen J. Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(12): 9881–9889

DOI

42
Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources, 2009, 186(2): 551–556

DOI

43
Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, 2(2): 249–256

DOI

44
Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454

DOI

45
Lei Z B, Zhang J T, Zhao X S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2011, 22(1): 153–160

DOI

46
Burke A R. R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 2007, 53(3): 1083–1091

DOI

47
Chang X, Ma Y, Yang M, Xing T, Tang L, Chen T, Guo Q, Zhu X, Liu J, Xia H. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Materials, 2019, 23: 358–366

DOI

Outlines

/