RESEARCH ARTICLE

The prior rules of designing Ti3C2Tx MXene-based gas sensors

  • Yingying Jian 1 ,
  • Danyao Qu 1 ,
  • Lihao Guo 1 ,
  • Yujin Zhu 1 ,
  • Chen Su 1 ,
  • Huanran Feng 1 ,
  • Guangjian Zhang 3 ,
  • Jia Zhang 3 ,
  • Weiwei Wu , 1 ,
  • Ming-Shui Yao , 2
Expand
  • 1. School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
  • 2. Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
  • 3. Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

Received date: 08 Jun 2020

Accepted date: 08 Sep 2020

Published date: 15 Jun 2021

Copyright

2021 Higher Education Press

Abstract

Working temperature, sensitivity, and selectivity are some of the characteristics of the applied gas sensors. How to design and fabricate an ideal gas sensor working at room temperature is still challenging and attracting lots of interest. Two-dimensional (2D) materials with ultra-thin structure have been demonstrated as a family of ideal candidates to achieve this goal. Among them, Ti3C2Tx MXene, a kind of layered sheet synthesized by selectively etching MAX phases materials, shows remarkable potential to be the sensitive materials solely or in a composite. However, their designing rules are still lacking critical thinking from the viewpoint of the intrinsic property of Ti3C2Tx MXene based materials. In this article, two critical features, i.e., the thickness of the sensitive materials, and the scope of the analytes, are elaborated towards Ti3C2Tx MXene based gas sensors after characterizing the performance of sensing reducing gases (NH3 and CO) and oxidizing gas (NO2). First, the thinner the Ti3C2Tx MXene sensitive layer, the better the sensitivity. Second, the Ti3C2Tx MXene based gas sensor is not suitable for strong and moderate oxidation gas due to its ease of oxidation. These two rules are demonstrated, and could be considered with priority both in the future researches and practical applications.

Cite this article

Yingying Jian , Danyao Qu , Lihao Guo , Yujin Zhu , Chen Su , Huanran Feng , Guangjian Zhang , Jia Zhang , Weiwei Wu , Ming-Shui Yao . The prior rules of designing Ti3C2Tx MXene-based gas sensors[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 505 -517 . DOI: 10.1007/s11705-020-2013-y

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 21801243), the Fundamental Research Funds the Central Universities of China (Grant No. JC2002), and the International Research Fellow of the Japan Society of the Promotion of Science (JSPS, Postdoctoral Fellowships for Research in Japan (Standard), P18334).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-2013-y and is accessible for authorized users.
1
Broza Y Y, Zhou X, Yuan M M, Qu D Y, Zheng Y B, Vishinkin R, Khatib M, Wu W W, Haick H. Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chemical Reviews, 2019, 119(22): 11761–11817

2
Hu W W, Wan L T, Jian Y Y, Ren C, Jin K, Su X H, Bai X X, Haick H, Yao M S, Wu W W. Electronic noses: from advanced materials to sensors aided with data processing. Advanced Materials Technologies, 2019, 4(2): 38

3
Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room-temperature gas sensors. Advanced Materials, 2016, 28(5): 795–831

4
Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 2019, 6(3): 470–506

5
Yao M, Li Q, Hou G, Lu C, Cheng B, Wu K, Xu G, Yuan F, Ding F, Chen Y. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Applied Materials & Interfaces, 2015, 7(4): 2856–2866

6
Hwang I S, Choi J K, Woo H S, Kim S J, Jung S Y, Seong T Y, Kim I D, Lee J H. Facile control of C2H5OH sensing characteristics by decorating discrete ag nanoclusters on SnO2 nanowire networks. ACS Applied Materials & Interfaces, 2011, 3(8): 3140–3145

7
Jang J S, Choi S J, Kim S J, Hakim M, Kim I D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Advanced Functional Materials, 2016, 26(26): 4740–4748

8
Kim S J, Choi S J, Jang J S, Cho H J, Koo W T, Tuller H L, Kim I D. Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Advanced Materials, 2017, 29(36): 1700737

9
Xiao Y, Lu L, Zhang A, Zhang Y, Sun L, Huo L, Li F. Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Applied Materials & Interfaces, 2012, 4(8): 3797–3804

10
Jian Y Y, Hu W W, Zhao Z H, Cheng P F, Haick H, Yao M S, Wu W W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Letters, 2020, 12(1): 1–43

11
Wu W W, Wang B, Segev Bar M, Dou W, Niu F, Horev Y D, Deng Y F, Plotkin M, Huynh T P, Jeries R, Free-standing and eco-friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli. Advanced Functional Materials, 2017, 27(40): 1703147

12
Wang Z, Huang L, Zhu X, Zhou X, Chi L. An ultrasensitive organic semiconductor NO2 sensor based on crystalline tips-pentacene films. Advanced Materials, 2017, 29(38): 1703192

13
Jang B, Lee K Y, Noh J S, Lee W. Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films. Sensors and Actuators. B, Chemical, 2014, 193: 530–535

14
Chunliang G, Zhidong L, Song W, Wang X, Huang Y, Wang K. Synthesis, UV response, and room-temperature ethanol sensitivity of undoped and Pd-doped coral-like SnO2. Journal of Nanoparticle Research, 2013, 15(10): 1998

15
Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak S I, Abrikosov I A, Rosen J, Hultman L, Andersson M, Lloyd Spetz A, Synthesis of Ti3Au2C2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017, 16(8): 814–818

16
Chae Y, Kim S J, Cho S Y, Choi J, Maleski K, Lee B J, Jung H T, Gogotsi Y, Lee Y, Ahn C W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387–8393

17
Pazniak H, Plugin I A, Loes M J, Inerbaev T M, Burmistrov I N, Gorshenkov M, Polcak J, Varezhnikov A S, Sommer M, Kuznetsov D V, Partially oxidized Ti3C2Tx Mxenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Applied Nano Materials, 2020, 3(4): 3195–3204

18
Yao Q, Ren G, Xu K, Zhu L, Khan H, Mohiuddin M, Khan M W, Zhang B Y, Jannat A, Haque F, 2D plasmonic tungsten oxide enabled ultrasensitive fiber optics gas sensor. Advanced Optical Materials, 2019, 7(24): 1901383

19
Jannat A, Haque F, Xu K, Zhou C, Zhang B Y, Syed N, Mohiuddin M, Messalea K A, Li X, Gras S L, Exciton-driven chemical sensors based on excitation-dependent photoluminescent two-dimensional SnS. ACS Applied Materials & Interfaces, 2019, 11(45): 42462–42468

20
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angewandte Chemie International Edition, 2017, 56: 16510–16514

21
Meng Z, Stolz R M, Mendecki L, Mirica K A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 2019, 119: 478–598

22
Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Van der waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition, 2019, 58: 14915–14919

23
Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chemical Reviews, 2020, 120(16): 8536–8580

24
Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chemical Reviews, 2018, 118: 6189–6235

25
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake K. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angewandte Chemie International Edition, 2020, 59: 172–176

26
Zhang Y, Wang L, Zhang N, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Advances, 2018, 8(36): 19895–19905

27
Chen W Y, Jiang X, Lai S N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11(1): 1302

28
Zhou S, Gu C, Li Z, Yang L, He L, Wang M, Huang X, Zhou N, Zhang Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498: 143889

29
Zavabeti A, Jannat A, Zhong L, Haidry A A, Yao Z, Ou J Z. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters, 2020, 12(1): 66

30
Mohiuddin M, Zavabeti A, Haque F, Mahmood A, Datta R S, Syed N, Khan M W, Jannat A, Messalea K, Zhang B Y, . Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(5): 2789–2797

31
Kim S J, Choi J, Maleski K, Hantanasirisakul K, Jung H T, Gogotsi Y, Ahn C W. Interfacial assembly of ultrathin, functional Mxene films. ACS Applied Materials & Interfaces, 2019, 11(35): 32320–32327

32
Zhao W N, Yun N, Dai Z H, Li Y F. A high-performance trace level acetone sensor using an indispensable V4C3Tx Mxene. RSC Advances, 2020, 10(3): 1261–1270

33
Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Metallic Ti3C2TxMXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano, 2018, 12(2): 986–993

34
Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sensors, 2019, 4(5): 1261–1269

35
Yuan W, Yang K, Peng H, Li F, Yin F. A flexible vocs sensor based on a 3D MXene framework with a high sensing performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(37): 18116–18124

36
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644

37
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253

38
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331

39
Zuo G, Wang Y, Teo W L, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angewandte Chemie International Edition, 2020, 59(28): 11287–11292

40
Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate. Journal of Physical Chemistry C, 2017, 121(36): 19983–19988

41
Habib T, Zhao X, Shah S A, Chen Y, Sun W, An H, Lutkenhaus J L, Radovic M, Green M J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Materials and Applications, 2019, 3(1): 8

42
Zhao X, Vashisth A, Prehn E, Sun W, Shah S A, Habib T, Chen Y, Tan Z, Lutkenhaus J L, Radovic M, Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513–526

43
Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano, 2020, 14(2): 2145–2155

44
Tang J, Mathis T S, Kurra N, Sarycheva A, Xiao X, Hedhili M N, Jiang Q, Alshareef H N, Xu B, Pan F, Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angewandte Chemie International Edition, 2019, 58(49): 17849–17855

45
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054

46
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chemistry of Materials, 2017, 29(11): 4848–4856

47
Lee Y, Kim S J, Kim Y J, Lim Y, Chae Y, Lee B J, Kim Y T, Han H, Gogotsi Y, Ahn C W. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581

48
Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch P A, Qin S, Han M, Yang W, Liu J, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Advanced Materials, 2020, 32(23): 2001093

49
Bao W, Tang X, Guo X, Choi S, Wang C, Gogotsi Y, Wang G. Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778–787

50
Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sensors, 2019, 4(10): 2763–2770

51
Koh H J, Kim S J, Maleski K, Cho S Y, Kim Y J, Ahn C W, Gogotsi Y, Jung H T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ x-ray diffraction study. ACS Sensors, 2019, 4(5): 1365–1372

52
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. Monolayer Ti2Co2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 2015, 7(24): 13707–13713

53
Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502

54
Lee E. VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Applied Materials & Interfaces, 2017, 9(42): 37184–37190

Outlines

/