The prior rules of designing Ti3C2Tx MXene-based gas sensors
Yingying Jian, Danyao Qu, Lihao Guo, Yujin Zhu, Chen Su, Huanran Feng, Guangjian Zhang, Jia Zhang, Weiwei Wu, Ming-Shui Yao
The prior rules of designing Ti3C2Tx MXene-based gas sensors
Working temperature, sensitivity, and selectivity are some of the characteristics of the applied gas sensors. How to design and fabricate an ideal gas sensor working at room temperature is still challenging and attracting lots of interest. Two-dimensional (2D) materials with ultra-thin structure have been demonstrated as a family of ideal candidates to achieve this goal. Among them, Ti3C2Tx MXene, a kind of layered sheet synthesized by selectively etching MAX phases materials, shows remarkable potential to be the sensitive materials solely or in a composite. However, their designing rules are still lacking critical thinking from the viewpoint of the intrinsic property of Ti3C2Tx MXene based materials. In this article, two critical features, i.e., the thickness of the sensitive materials, and the scope of the analytes, are elaborated towards Ti3C2Tx MXene based gas sensors after characterizing the performance of sensing reducing gases (NH3 and CO) and oxidizing gas (NO2). First, the thinner the Ti3C2Tx MXene sensitive layer, the better the sensitivity. Second, the Ti3C2Tx MXene based gas sensor is not suitable for strong and moderate oxidation gas due to its ease of oxidation. These two rules are demonstrated, and could be considered with priority both in the future researches and practical applications.
MXene based sensor / prior / reducing gases / oxidizing gases
[1] |
Broza Y Y, Zhou X, Yuan M M, Qu D Y, Zheng Y B, Vishinkin R, Khatib M, Wu W W, Haick H. Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chemical Reviews, 2019, 119(22): 11761–11817
|
[2] |
Hu W W, Wan L T, Jian Y Y, Ren C, Jin K, Su X H, Bai X X, Haick H, Yao M S, Wu W W. Electronic noses: from advanced materials to sensors aided with data processing. Advanced Materials Technologies, 2019, 4(2): 38
|
[3] |
Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room-temperature gas sensors. Advanced Materials, 2016, 28(5): 795–831
|
[4] |
Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 2019, 6(3): 470–506
|
[5] |
Yao M, Li Q, Hou G, Lu C, Cheng B, Wu K, Xu G, Yuan F, Ding F, Chen Y. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Applied Materials & Interfaces, 2015, 7(4): 2856–2866
|
[6] |
Hwang I S, Choi J K, Woo H S, Kim S J, Jung S Y, Seong T Y, Kim I D, Lee J H. Facile control of C2H5OH sensing characteristics by decorating discrete ag nanoclusters on SnO2 nanowire networks. ACS Applied Materials & Interfaces, 2011, 3(8): 3140–3145
|
[7] |
Jang J S, Choi S J, Kim S J, Hakim M, Kim I D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Advanced Functional Materials, 2016, 26(26): 4740–4748
|
[8] |
Kim S J, Choi S J, Jang J S, Cho H J, Koo W T, Tuller H L, Kim I D. Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Advanced Materials, 2017, 29(36): 1700737
|
[9] |
Xiao Y, Lu L, Zhang A, Zhang Y, Sun L, Huo L, Li F. Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Applied Materials & Interfaces, 2012, 4(8): 3797–3804
|
[10] |
Jian Y Y, Hu W W, Zhao Z H, Cheng P F, Haick H, Yao M S, Wu W W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Letters, 2020, 12(1): 1–43
|
[11] |
Wu W W, Wang B, Segev Bar M, Dou W, Niu F, Horev Y D, Deng Y F, Plotkin M, Huynh T P, Jeries R,
|
[12] |
Wang Z, Huang L, Zhu X, Zhou X, Chi L. An ultrasensitive organic semiconductor NO2 sensor based on crystalline tips-pentacene films. Advanced Materials, 2017, 29(38): 1703192
|
[13] |
Jang B, Lee K Y, Noh J S, Lee W. Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films. Sensors and Actuators. B, Chemical, 2014, 193: 530–535
|
[14] |
Chunliang G, Zhidong L, Song W, Wang X, Huang Y, Wang K. Synthesis, UV response, and room-temperature ethanol sensitivity of undoped and Pd-doped coral-like SnO2. Journal of Nanoparticle Research, 2013, 15(10): 1998
|
[15] |
Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak S I, Abrikosov I A, Rosen J, Hultman L, Andersson M, Lloyd Spetz A,
|
[16] |
Chae Y, Kim S J, Cho S Y, Choi J, Maleski K, Lee B J, Jung H T, Gogotsi Y, Lee Y, Ahn C W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387–8393
|
[17] |
Pazniak H, Plugin I A, Loes M J, Inerbaev T M, Burmistrov I N, Gorshenkov M, Polcak J, Varezhnikov A S, Sommer M, Kuznetsov D V,
|
[18] |
Yao Q, Ren G, Xu K, Zhu L, Khan H, Mohiuddin M, Khan M W, Zhang B Y, Jannat A, Haque F,
|
[19] |
Jannat A, Haque F, Xu K, Zhou C, Zhang B Y, Syed N, Mohiuddin M, Messalea K A, Li X, Gras S L,
|
[20] |
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angewandte Chemie International Edition, 2017, 56: 16510–16514
|
[21] |
Meng Z, Stolz R M, Mendecki L, Mirica K A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 2019, 119: 478–598
|
[22] |
Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Van der waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition, 2019, 58: 14915–14919
|
[23] |
Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chemical Reviews, 2020, 120(16): 8536–8580
|
[24] |
Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chemical Reviews, 2018, 118: 6189–6235
|
[25] |
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake K. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angewandte Chemie International Edition, 2020, 59: 172–176
|
[26] |
Zhang Y, Wang L, Zhang N, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Advances, 2018, 8(36): 19895–19905
|
[27] |
Chen W Y, Jiang X, Lai S N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11(1): 1302
|
[28] |
Zhou S, Gu C, Li Z, Yang L, He L, Wang M, Huang X, Zhou N, Zhang Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498: 143889
|
[29] |
Zavabeti A, Jannat A, Zhong L, Haidry A A, Yao Z, Ou J Z. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters, 2020, 12(1): 66
|
[30] |
Mohiuddin M, Zavabeti A, Haque F, Mahmood A, Datta R S, Syed N, Khan M W, Jannat A, Messalea K, Zhang B Y,
|
[31] |
Kim S J, Choi J, Maleski K, Hantanasirisakul K, Jung H T, Gogotsi Y, Ahn C W. Interfacial assembly of ultrathin, functional Mxene films. ACS Applied Materials & Interfaces, 2019, 11(35): 32320–32327
|
[32] |
Zhao W N, Yun N, Dai Z H, Li Y F. A high-performance trace level acetone sensor using an indispensable V4C3Tx Mxene. RSC Advances, 2020, 10(3): 1261–1270
|
[33] |
Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J,
|
[34] |
Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sensors, 2019, 4(5): 1261–1269
|
[35] |
Yuan W, Yang K, Peng H, Li F, Yin F. A flexible vocs sensor based on a 3D MXene framework with a high sensing performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(37): 18116–18124
|
[36] |
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
|
[37] |
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
|
[38] |
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
|
[39] |
Zuo G, Wang Y, Teo W L, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angewandte Chemie International Edition, 2020, 59(28): 11287–11292
|
[40] |
Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate. Journal of Physical Chemistry C, 2017, 121(36): 19983–19988
|
[41] |
Habib T, Zhao X, Shah S A, Chen Y, Sun W, An H, Lutkenhaus J L, Radovic M, Green M J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Materials and Applications, 2019, 3(1): 8
|
[42] |
Zhao X, Vashisth A, Prehn E, Sun W, Shah S A, Habib T, Chen Y, Tan Z, Lutkenhaus J L, Radovic M,
|
[43] |
Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T,
|
[44] |
Tang J, Mathis T S, Kurra N, Sarycheva A, Xiao X, Hedhili M N, Jiang Q, Alshareef H N, Xu B, Pan F,
|
[45] |
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054
|
[46] |
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D,
|
[47] |
Lee Y, Kim S J, Kim Y J, Lim Y, Chae Y, Lee B J, Kim Y T, Han H, Gogotsi Y, Ahn C W. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581
|
[48] |
Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch P A, Qin S, Han M, Yang W, Liu J,
|
[49] |
Bao W, Tang X, Guo X, Choi S, Wang C, Gogotsi Y, Wang G. Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778–787
|
[50] |
Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sensors, 2019, 4(10): 2763–2770
|
[51] |
Koh H J, Kim S J, Maleski K, Cho S Y, Kim Y J, Ahn C W, Gogotsi Y, Jung H T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ x-ray diffraction study. ACS Sensors, 2019, 4(5): 1365–1372
|
[52] |
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. Monolayer Ti2Co2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 2015, 7(24): 13707–13713
|
[53] |
Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502
|
[54] |
Lee E. VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Applied Materials & Interfaces, 2017, 9(42): 37184–37190
|
/
〈 | 〉 |