1 Introduction
Tab.1 MXene-based membranes for ion sieving |
MXene sample | Methods | Support | Improved strategy | Applications | Separation performances (water flux, ion rejection) | Ref. |
---|---|---|---|---|---|---|
Ti3C2Tx membrane | VFa) | PVDFb) | Ion sieving (size and charge effect) | [45] | ||
Ti3C2Tx membrane | VFa) | PANc) | Ion sieving (PV desalination) | 85.4 L∙m–2∙h–1, 99.5% (NaCl) | [63] | |
Ti3C2Tx membrane | VFa) | Surface grafting (PDDAd)) | Ion sieving (OEGe)) | [55] | ||
Ti3C2Tx membrane | VFa) | Cellulose acetate | Ion sieving (OEGe)) | [64] | ||
Ti3C2Tx/Kevlar hybrid membrane | VFa) | Molecular crosslinking | Ion sieving (OEGe)) | [65] | ||
Ti3C2Tx membrane | VFa) | Polypropylene | Ion sieving | [66] | ||
Ti3C2Tx membrane | VFa) | Polyamide | Self-crosslinking | Ion sieving | 0.0515 L∙m–2∙h–1∙bar–1, 98% | [57] |
Ti3C2Tx membrane | VFa) | a-Al2O3 tubular | Self-crosslinking | Ion sieving | 11.5 L∙m–2∙h–1∙bar–1, 99.2% (VO2+) | [53] |
Ti3C2Tx/maleic acid membrane | VFa) | Nylon | Molecular crosslinking | Ion sieving | 22.8 kg∙m–2∙h–1∙bar–1,>99.7% (NaCl) | [67] |
Ti3C2Tx membrane | VFa) | PESf) | Ionic crosslinking (Al3+) | Ion sieving | 2.8 L∙m–2∙h–1∙bar–1, 96% (NaCl) | [68] |
a) VF: vacuum filtration; b) PVDF: polyvinylidene difluoride; c) PAN: polyacrylonitrile; d) PDDA: polydiallyl dimethyl ammonium; e) OEG: osmotic energy generation; f) PES: polyethersulfone. |
Tab.2 MXene-based membranes for gas molecules sieving and PV |
MXene sample | Methods | Support | Improved strategy | Applications | Separation performances | Ref. |
---|---|---|---|---|---|---|
Ti3C2Tx membrane | VFa) | Gas molecules sieving | H2 permeability: 1201 GPU, a(H2/CO2)>160 | [47] | ||
Ti3C2Tx membrane (simulation) | VFa) | Gas molecules sieving | [69] | |||
Ti3C2Tx membrane | VFa) | AAOb) | Self-crosslinking | Gas molecules sieving | H2 permeability: 612.7 GPU, a(H2/N2): 41 | [70] |
Ti3C2Tx membrane (simulation) | VFa) | AAOb) | Self-crosslinking | Gas molecules sieving | [71] | |
Ti3C2Tx membrane | VFa) | AAOb) | Molecular crosslinking (PEIc)/borate) | Gas molecules sieving | H2 permeability: 1584 GPU, a(H2/CO2): 27; CO2 permeability: 350 GPU, a(CO2/CH4): 15.3 | [49] |
Ti3C2Tx/pebax1657 hybrid membrane | Dcd) | PVDFe) | MXene as additives | Gas molecules sieving | CO2 permeability: 1360 GPU, a(CO2/N2): 31 | [60] |
Ti3C2Tx/pebax hybrid membrane | SCf) | PANg) | MXene as additives | Gas molecules sieving | CO2 permeability: 21.6 GPU, a(CO2/N2): 72.5 | [72] |
Ti3C2Tx membrane | VFa) | Nylon | EtOHh) dehydration | Water flux: 263.4 g∙m–2∙h–1, separation factor: 135.2 | [73] | |
Ti3C2Tx/sodium alginate hybrid membrane | Dcd) | PANg) | MXene as additives | EtOHh) dehydration | Water flux: 505 g∙m–2∙h–1, separation factor: 9946 | [74] |
Ti2C2Tx membrane | VFa) | PANg) | Molecular crosslinking (HPEIi)) | IPAj) dehydration | Water flux: 1069±47 g∙m–2∙h–1, permeate side>99 wt-% | [75] |
Ti3C2Tx/chitosan hybrid membrane | SCf) | PANg) | MXene as additives | Solvent dehydration | Water flux: 1.4–1.5 kg∙m–2∙h–1, separation factor: 1421, 4898, 906 (EtOHh), EACk), DMCl)) | [76] |
Ti2C2Tx membrane | VFa) | PANg) | Molecular crosslinking (PEIc), PDDAm), PAHn)) | IPAj) dehydration | Water flux: 1237 g∙m–2∙h–1, separation factor: 1932 | [77] |
a) VF: vacuum filtration; b) AAO: anodic aluminum oxide; c) PEI: polyethyleneimine; d) Dc: drop-casting; e) PVDF: polyvinylidene difluoride; f) SC: spin-coating; g) PAN: polyacrylonitrile; h) EtOH: ethanol; i) HPEI: hyperbranched polyethylenimine; j) IPA: isopropanol; k) EAC: ethyl acetate; l) DMC: dimethyl carbonate; m) PDDA: polydiallyl dimethyl ammonium; n) PAH: polyallylamine hydrochloride. |
Tab.3 MXene-based membranes for small molecules sieving |
MXene sample | Method | Support | Improved strategy | Applications | Separation performances (flux, rejection) | Ref. |
---|---|---|---|---|---|---|
Ti3C2Tx/GO membranes | VFa) | Nylon/cellulose acetate | SMSb) | 2.1, 0.3, 0.67, 0.23 L∙m–2∙h–1∙bar–1 (H2O), 68%, 99.5%, 93.5%, 100% (MRc), MBd), Rbe), BBf)) | [78] | |
Ti3C2Tx membrane | VFa) | PVDFg) | Molecular crosslinking | SMSb) | 887 L∙m–2∙h–1∙bar–1 (H2O),>99.4% (Oil) | [52] |
Ti3C2Tx membrane | VFa) | Commercial papers | SMSb) | 450 L∙m–2∙h–1∙bar–1 (H2O),>99% (Oil) | [51] | |
Ti3C2Tx membrane | VFa) | PESh) | SMSb) | 540 L∙m–2∙h–1∙bar–1 (H2O), 99.94% (Oil) | [48] | |
Ti3C2 membrane | VFa) | Glass fiber | Li-S battery | [79] | ||
Ti3C2Tx membrane | VFa) | Mixed cellulose ester | SMSb) | 28.94±0.74 L∙m–2∙h–1∙bar–1 (H2O), 100±0.1% (MBd)) | [80] | |
Ti3C2Tx membrane | VFa) | PESh) | SMSb) | 115 L∙m–2∙h–1∙bar–1 (H2O), 92.3% (CRi)) | [81] | |
Ti3C2Tx membrane | VFa) | Nylon | Wrinkles construction | SMSb) | 70, 64, 61 L∙m–2∙h–1∙bar–1 (H2O), 76.4%, 67.7%, 84.3% (AY14j), EYk), EBl)) | [58] |
Ag@Ti3C2Tx membrane | VFa) | PVDFg) | NPs intercalation | SMSb) | 387.05, 354.29, 345.81 L∙m–2∙h–1∙bar–1 (H2O), 79.93%, 92.32%, 100% (RBm), MGn), BSAo)) | [59] |
Ti3C2Tx membrane | VFa) | AAOp) | Template sacrifice method | SMSb) | >1000 L∙m–2∙h–1∙bar–1 (H2O),>90% (size large than 2.5 nm) | [46] |
TiO2-Ti3C2Tx membrane | DCq) | Hollow fiber | 2D scaffolds | SMSb) | 90 L∙m–2∙h–1∙bar–1 (H2O),>22000 Da (dextran) | [62] |
TiO2-Ti3C2Tx membrane | DCq) | Hollow fiber | 2D scaffolds | SMSb) | 102 L∙m–2∙h–1∙bar–1 (H2O), 14854 Da (dextran) | [82] |
Ti3C2Tx/PANr) hybrid membrane | ESs) | MXene as additives | SMSb) | Pressure drop: 42 Pa, 99.7% (PM2.5) | [83] | |
Ti3C2Tx/GO membrane | VFa) | Nylon | SMSb) | 21.02, 48.32, 25.03, 10.76, 6.18 L∙m–2∙h–1∙bar–1 (H2O, CPt), MeOHu), EtOHv), IPAw)),>90% | [23] | |
Ti3C2Tx membrane | VFa) | Nylon | Surface grafting | SMSb) | 3337, 3018 L∙m–2∙h–1∙bar–1 (ACNx), MeOHu)),>92%, (MBd)) | [54] |
Ti3C2Tx/(PEIy)/PDMSz)) hybrid membrane | Dca1) | PANr) | Modified MXene as additives | SMSb) | PEIy) membrane: 2.6, 0.3 L∙m–2∙h–1∙bar–1 (IPAw), N/Aa1)), 96%, 800 Da (PEGb1), 10 bar); PDMSz) membrane: 0.3, 1.5 L∙m–2∙h–1∙bar–1 (IPAw), N/Aa1)), 97%, 800 Da (PEGb1), 10 bar) | [61] |
Ti3C2Tx/(PEIy)/PDMSz)) hybrid membrane | Dca1) | PANr) | MXene as additives | SMSb) | PEIy) membrane: 25.8, 19.1, 15.1, 6.4 L∙m–2∙h–1∙bar–1 (IPAw), EACc1), MEKd1), N/Ae1)), 200 Da; PDMSz) membrane: 19.8, 14.9 L∙m–2∙h–1∙bar–1 (TLf1), EACc1)), 320 Da | [84] |
Ti3C2Tx/P84g1) hybrid membrane | PIh1) | MXene as additives | SMSb) | 268 L∙m–2∙h–1∙bar–1 (H2O), 408 Da (GVi1)) | [85] | |
RGOj1)/PDAk1)/MXene hybrid membrane | VFa) | Nylon | SMSb) | >200 L∙m–2∙h–1∙bar–1 (H2O),>96% (MBd), MOl1), MRc), CRi), EBl)) |
a) VF: vacuum filtration; b) SMS: small molecules sieving; c) MR: methyl red; d) MB: methylene blue; e) Rb: rose bengal; f) BB: brilliant blue; g) PVDF: polyvinylidene difluoride; h) PES: polyethersulfone; i) CR: congo red; j) AY14: acid yellow 14; k) EY: eosin Y; l) EB: evans blue; m) RB: rhodamine B; n) MG: methyl green; o) BSA: bovine serum albumin; p) AAO: anodic aluminum oxide; q) DC: dip-coating; r) PAN: polyacrylonitrile; s) ES: electro-spinning; t) CP: acetone; u) MeOH: methanol; v) EtOH: ethanol; w) IPA: isopropanol; x) ACN: acetonitrile; y) PEI: polyethyleneimine; z) PDMS: polydimethylsiloxane; a1) Dc: drop-casting; b1) PEG: polyethylene glycol; c1) EAC: ethyl acetate; d1) MEK: butanone; e1) N/A: n-heptane; f1) TL: toluene; g1) P84: polyimide; h1) PI: phase inversion; i1) GV: gentian violet; j1) RGO: reduced graphene oxide; k1) PDA: polydopamine; l1) MO: methyl orange. |
2 MXene synthesis and assembly
2.1 MXene synthesis
2.2 MXene nanosheet assembly
2.3 Lamella properties of MXene
Fig.3 (a) Separation performance of MXene membranes for molecules with various sizes. Reproduced with permission from ref. [46]. Copyright 2017 Wiley-VCH GmbH, Weinheim; (b) schematic of LiPS shuttling in a Li-S battery with few-layered MXene nanosheets. Reproduced with permission from ref. [79]. Copyright 2016 Royal Society of Chemistry. |
Fig.5 (a) Scanning electronic microscopy (SEM) image of a self-supporting MXene membrane; (b) comparing the H2/CO2 separation performance of a self-supporting MXene membrane and state-of-the-art gas-separation membranes. Reproduced with permission from ref. [47]. Copyright 2018 Springer-Verlag GmbH Germany; (c) cross-sectional SEM image of an ultrathin MXene membrane; (d) comparing the H2/CO2 separation performance of the ultrathin MXene membrane and state-of-the-art gas separation membranes. Reproduced with permission from ref. [49]. Copyright 2018 Wiley-VCH GmbH, Weinheim. |
Fig.6 (a) Schematic illustration of an MXene membrane for oil droplet sieving. Reproduced with permission from ref. [51]. Copyright 2016 Royal Society of Chemistry; (b) photographic images of a toluene/water emulsion and the permeate after separation by an MXene membrane. Reproduced with permission from ref. [48]. Copyright 2019 Elsevier. |
3 Designing MXene-based membranes
3.1 Cross-linking MXene nanosheets
Fig.7 Schematics of cross-linked MXene (Ti3C2Tx) membranes formed by (a) self-crosslinking. Reproduced with permission from ref. [57]. Copyright 2019 American Chemical Society; (b) molecular crosslinking. Reproduced with permission from ref. [49]. Copyright 2018 Wiley-VCH GmbH, Weinheim; (c) ionic crosslinking. |
3.2 Constructing additional nanochannels
Fig.8 (a) Schematic of a crumpled MXene lamellar membrane. Reproduced with permission from ref. [58]. Copyright 2020 American Chemical Society; (b) schematic of an ultrahigh-flux and fouling-resistant membrane created by in-situ formed Ag NPs. Reproduced with permission from ref. [59]. Copyright 2018 Royal Society of Chemistry; (c) schematic of the preparation of a porous MXene membrane by the template-sacrifice method. Reproduced with permission from ref. [46]. Copyright 2017 Wiley-VCH GmbH, Weinheim; (d) schematic of molecular configurations within nanochannels (MD simulations). Reproduced with permission from ref. [54]. Copyright 2019 Wiley-VCH GmbH, Weinheim. |
3.3 MXene hybrid membranes
Fig.9 (a) Performance of 3 wt-% MXene/chitosan hybrid membrane for ethyl acetate dehydration. Reproduced with permission from ref. [76]. Copyright 2018 Elsevier; (b) schematic showing the hydrogen bonds between MXene (Ti3C2Tx) nanosheets and pebax chains. Reproduced with permission from ref. [60]. Copyright 2020 American Chemical Society; (c) schematic depicting MXene modification and the microstructures of MXene hybrid membranes based on various functional groups. Reproduced with permission from ref. [61]. Copyright 2017 Elsevier. |