Recent progress in the design and fabrication of MXene-based membranes

Kai Qu, Kang Huang, Zhi Xu

PDF(4566 KB)
PDF(4566 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (4) : 820-836. DOI: 10.1007/s11705-020-1997-7
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress in the design and fabrication of MXene-based membranes

Author information +
History +

Abstract

Two-dimensional membranes have attracted significant attention due to their superior characteristics, and their ability to boost both flux and selectivity have led to their reputation as potential next-generation separation membranes. Among them, emerging MXene-based membranes play significant roles in the competitive membrane-separation field. In this mini-review, we systematically discuss the assembly and separation mechanisms of these membranes. Moreover, we highlight strategies based on the crosslinking of MXene nanosheets and the construction of additional nanochannels that further enhance the permeabilities and anti-swelling properties of MXene-based membranes and meet the requirements of practical applications, such as gas-molecule sieving, ion sieving, and other small-molecule sieving. MXene nanosheets can also be used as additives that introduce specific functionalities into hybrid membranes. In addition, extended applications that use MXenes as scaffolds are also discussed.

Graphical abstract

Keywords

MXene / 2D materials / membranes / separation

Cite this article

Download citation ▾
Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes. Front. Chem. Sci. Eng., 2021, 15(4): 820‒836 https://doi.org/10.1007/s11705-020-1997-7

References

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2014, 306(5696): 666–669
[2]
Zhu J, Ha E, Zhao G L, Zhou Y, Huang D S, Yue G Z, Hu L S, Sun N, Wang Y, Lee L Y S, Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352: 306–327
[3]
Zhan X X, Si C, Zhou J, Sun Z M. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020, 5(2): 235–258
[4]
Tang Q, Zhou Z. Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58(8): 1244–1315
[5]
Huang K, Li Z J, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 2018, 47(14): 5109–5124
[6]
Cheng L, Guan K C, Liu G P, Jin W Q. Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. Journal of Membrane Science, 2020, 595: 117568
[7]
Cheng Y D, Wang X R, Jia C K, Wang Y X, Zhai L Z, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metalorganic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
[8]
Lu P, Liu Y, Zhou T T, Wang Q, Li Y S. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103
[9]
Wang X R, Chi C L, Zhang K, Qian Y H, Gupta K M, Kang Z X, Jiang J W, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460
[10]
Wang Y, Li J P, Yang Q Y, Zhong C L. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701
[11]
Zhong Z X, Yao J F, Chen R Z, Low Z X, He M, Liu J Z, Wang H T. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(30): 15715–15722
[12]
Shen J, Liu G P, Huang K, Jin W Q, Lee K R, Xu N P. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
[13]
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383
[14]
Zhang M C, Guan K C, Ji Y F, Liu G P, Jin W Q, Xu N P. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10(1): 1253
[15]
Hu R R, Zhang R J, He Y J, Zhao G K, Zhu H W. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization. Journal of Membrane Science, 2018, 564: 813–819
[16]
Li Y, Yuan S, Xia Y, Zhao W, Easton C D, Selomulya C, Zhang X W. Mild annealing reduced graphene oxide membrane for nanofiltration. Journal of Membrane Science, 2020, 601: 117900
[17]
Liang B, Zhan W, Qi G G, Lin S S, Nan Q, Liu Y X, Cao B, Pan K. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5140–5147
[18]
Yan Y G, Wang W S, Li W, Loh K P, Zhang J. A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9: 18951
[19]
Zhang M C, Mao Y Y, Liu G Z, Liu G P, Fan Y Q, Jin W Q. Molecular bridges stabilize graphene oxide membranes in water. Angewandte Chemie International Edition, 2020, 59(4): 1689–1695
[20]
Zhang M C, Sun J J, Mao Y Y, Liu G P, Jin W Q. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. Journal of Membrane Science, 2019, 574: 196–204
[21]
Liu Y C, Zhu M, Chen M Y, Ma L L, Yang B, Li L L, Tu W W. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chemical Engineering Journal, 2019, 359: 47–57
[22]
Cheng P, Chen Y, Gu Y H, Yan X, Lang W Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308
[23]
Wei S C, Xie Y, Xing Y D, Wang L C, Ye H Q, Xiong X, Wang S, Han K. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422
[24]
Zhang X K, Li H, Wang J, Peng D L, Liu J D, Zhang Y T. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. Journal of Membrane Science, 2019, 581: 321–330
[25]
Peng Y, Yao R, Yang W S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification. Chemical Communications, 2019, 55: 3935
[26]
Liang F, Liu Q, Zhao J, Guan K C, Mao Y Y, Liu G P, Gu X H, Jin W Q. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2019, 66(2): e16812
[27]
Zhao D, Zhao J, Ji Y F, Liu G P, Liu S M, Jin W Q. Facilitated water-selective permeation via PEGylation of graphene oxide membrane. Journal of Membrane Science, 2018, 567: 311–320
[28]
Huang K, Liu G P, Lou Y Y, Dong Z Y, Shen J, Jin W Q. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932
[29]
Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
[30]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
[31]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005
[32]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
[33]
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098
[34]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4: 1716
[35]
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano, 2019, 13(8): 8491–8494
[36]
Hantanasirisakul K, Alhabeb M, Lipatov A, Maleski K, Anasori B, Salles P, Ieosakulrat C, Pakawatpanurut P, Sinitskii A, May S J, Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chemistry of Materials, 2019, 31(8): 2941–2951
[37]
Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23(17): 2185–2192
[38]
Hemanth N R, Balasubramanian K. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chemical Engineering Journal, 2019, 392: 123678
[39]
Szuplewska A, Kulpinska D, Dybko A, Chudy M, Jastrzebska A M, Olszyna A, Brzozka Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in Biotechnology, 2020, 38(3): 264–279
[40]
Sinha A, Dhanjai , Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. MXene: an emerging material for sensing and biosensing. Trends in Analytical Chemistry, 2018, 105: 424–435
[41]
Guo Z L, Zhou J, Zhu L G, Sun Z M. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11446–11452
[42]
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chemical Engineering Journal, 2020, 388: 124340
[43]
Fu L J, Yan Z L, Zhao Q H, Yang H M. Novel 2D nanosheets with potential applications in heavy metal purification: a review. Advanced Materials Interfaces, 2018, 5(23): 1801094
[44]
Huang X W, Wu P Y. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Advanced Functional Materials, 2020, 30(12): 1910048
[45]
Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
[46]
Ding L, Wei Y Y, Wang Y J, Chen H B, Caro J, Wang H H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
[47]
Ding L, Wei Y Y, Li L B, Zhang T, Wang H H, Xue J, Ding L X, Wang S Q, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155
[48]
Li Z K, Liu Y C, Li L B, Wei Y Y, Caro J, Wang H H. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. Journal of Membrane Science, 2019, 592: 117361
[49]
Shen J, Liu G Z, Ji Y F, Liu Q, Cheng L, Guan K C, Zhang M C, Liu G P, Xiong J, Yang J, 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511
[50]
Feng X F, Yu Z X, Long R X, Sun Y X, Wang M, Li X H, Zeng G Y. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separation and Purification Technology, 2020, 247: 116945
[51]
Saththasivam J, Wang K, Yiming W, Liu Z Y, Mahmoud K A. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Advances, 2016, 9(29): 16296–16304
[52]
Zhang H J, Wang Z H, Shen Y Q, Mu P, Wang Q T, Li J. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. Journal of Colloid and Interface Science, 2020, 561: 861–869
[53]
Sun Y Q, Li S L, Zhuang Y X, Liu G Z, Xing W H, Jing W Q. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. Journal of Membrane Science, 2019, 591: 117350
[54]
Wu X L, Cui X L, Wu W J, Wang J T, Li Y F, Jiang Z Y. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529
[55]
Ding L, Xiao D, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angewandte Chemie International Edition, 2020, 59(22): 8720–8726
[56]
Li J, Li X, Van der Bruggen B. MXene based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
[57]
Lu Z, Wei Y Y, Deng J J, Ding L, Li Z K, Wang H H. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544
[58]
Xing Y D, Akonkwa G, Liu Z, Ye H Q, Han K. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3(2): 1526–1534
[59]
Pandey R P, Rasool K, Madhavan V E, Aïssa B, Gogotsi Y, Mahmoud K A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3522–3533
[60]
Shamsabadi A A, Isfahani A P, Salestan S K, Rahimpour A, Ghalei B, Sivaniah E, Soroush M. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Applied Materials & Interfaces, 2020, 12(3): 3984–3992
[61]
Hao L, Zhang H Q, Wu X L, Zhang J K, Wang J T, Li Y F. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149
[62]
Xu Z, Sun Y Q, Zhuang Y X, Jing W H, Ye H, Cui Z F. Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564: 35–43
[63]
Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558
[64]
Hong S, Ming F W, Shi Y, Li R Y, Kim I S, Tang C Y, Alshareef H N, Wang P. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano, 2019, 13(8): 8917–8925
[65]
Zhang Z, Yang S, Zhang P P, Zhang J, Chen G B, Feng X L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nature Communications, 2019, 10(1): 2920
[66]
Lao J C, Lv R J, Gao J, Wang A X, Wu J S, Luo J Y. Aqueous stable Ti3C2 MXene membrane with fast and photo-switchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464–12471
[67]
Ding M M, Xu H, Chen W, Yang G, Kong Q, Ng D, Lin T, Xie Z L. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. Journal of Membrane Science, 2020, 600: 117871
[68]
Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302
[69]
Li L B, Zhang T, Duan Y F, Wei Y Y, Dong C J, Ding L, Qiao Z W, Wang H H. Selective gas diffusion in twodimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
[70]
Fan Y Y, Wei L Y, Meng X X, Zhang W M, Yang N T, Jin Y, Wang X B, Zhao M W, Liu S M. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
[71]
Jin Y, Fan Y Y, Meng X X, Zhang W M, Meng B, Yang N T, Liu S M. Theoretical and experimental insights into the mechanism for gas separation through nanochannels in 2D Laminar MXene membranes. Processes (Basel, Switzerland), 2019, 7(10): 751
[72]
Liu G Z, Cheng L, Chen G N, Liang F, Liu G P, Jin W Q. Pebax-based membrane filled with two-dimensional MXene nanosheets for efficient CO2 capture. Chemistry, an Asian Journal, 2020, 15(15): 2364–2070
[73]
Wu Y, Ding L, Lu Z, Deng J J, Wei Y Y. Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 2019, 590: 117300
[74]
Li S S, Dai J, Geng X, Li J D, Li P, Lei J D, Wang L Y, He J. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Separation and Purification Technology, 2020, 235: 116206
[75]
Liu G Z, Shen J, Ji Y F, Liu Q, Liu G P, Yang J, Jin W Q. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 12095–12104
[76]
Xu Z, Liu G Z, Ye H, Jin W Q, Cui Z F. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563: 625–632
[77]
Liu G Z, Liu S, Ma K, Wang H Y, Wang X Y, Liu G P, Jin W Q. Polyelectrolyte functionalized Ti2CTx MXene membranes for pervaporation dehydration of isopropanol/water mixtures. Industrial & Engineering Chemistry Research, 2020, 59(10): 4732–4741
[78]
Kang K M, Kim D W, Ren C E, Cho K M, Kim S J, Choi J H, Nam Y T, Gogotsi Y, Jung H T. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Applied Materials & Interfaces, 2017, 9(51): 44687–44694
[79]
Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithiumsulfur batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 5993–5998
[80]
Zhang S Y, Liao S Y, Qi F Y, Liu R T, Xiao T H, Hu J Q, Li K X, Wang R B, Min Y G. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. Journal of Hazardous Materials, 2020, 384: 121367
[81]
Han R L, Ma X F, Xie Y L, Teng D, Zhang S H. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 2017, 7: 56204–56210
[82]
Sun Y Q, Xu Z, Zhuang Y X, Liu G Z, Jin W Q, Liu G P, Jing W H. Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5(4): 045003
[83]
Gao X, Li Z K, Xue J, Qian Y, Zhang L Z, Caro J, Wang H H. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. Journal of Membrane Science, 2019, 586: 162–169
[84]
Wu X L, Hao L, Zhang J K, Zhang X, Wang J T, Liu J D. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188
[85]
Han R L, Xie Y L, Ma X F. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chinese Journal of Chemical Engineering, 2019, 27(4): 877–883
[86]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(41): 21663–21668
[87]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730–4737
[88]
Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J S, Barsoum M W, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
[89]
Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 2015, 7(3): 1795–1803
[90]
Huang H B, Ying Y L, Peng X S. Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 13772–13782
[91]
Putz K W, Compton O C, Segar C, An Z, Nguyen S T, Brinson L C. Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano, 2011, 5(8): 6601–6609
[92]
Dikin D A, Stankovich S, Zimney E J, Piner R D, Ruoff R S. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460
[93]
Han R Y, Wu P Y. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481
[94]
Cao X P, Jing W H, Xing W H, Fan Y Q, Kong Y, Dong J H. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process. Chemical Communications, 2011, 47(12): 3457–3459
[95]
Zou D, Qiu M H, Chen X F, Fan Y Q. One-step preparation of high-performance bilayer a-alumina ultrafiltration membranes via co-sintering process. Journal of Membrane Science, 2017, 524: 141–150
[96]
Xia C S, Xu Z, Yu J, Sun Y Q, Jing W H. Fabrication of microporous GO-TiO2 membrane via an improved weak alkaline solgel method. Journal of Membrane Science, 2018, 561: 10–18
[97]
Yu J, Zhang Y, Chen J, Cui L L, Jing W H. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870
[98]
Lee Y, Kim S J, Kim Y J, Lim Y, Chae Y, Lee B J, Kim Y T, Han H, Gogotsi Y, Ahn C W. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581
[99]
Natu V, Hart J L, Sokol M, Chiang H, Taheri M L, Barsoum M W. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angewandte Chemie International Edition, 2019, 58(36): 12655–12660
[100]
Wang Z H, Li H B, Luo M L, Chen T H, Xia X F, Chen H L, Ma C Y, Guo J, He Z W, Song Y F, MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Applied Nano Materials, 2020, 3(4): 3513–3522
[101]
Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem, 2019, 5(1): 18–50
[102]
Zhang W, Guo Z Y, Huang D Q, Liu Z M, Guo X, Zhong H Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32(33): 8555–8561
[103]
Chang Z Y, Deng J K, Chandrakumara G G, Yan W Y, Liu J Z. Two-dimensional shape memory graphene oxide. Nature Communications, 2016, 7(1): 11972
[104]
Kim S, Gupta M K, Lee K Y, Sohn A, Kim T Y, Shin K S, Kim D, Kim S K, Lee K H, Shin H J, Transparent flexible graphene triboelectric nanogenerators. Advanced Materials, 2014, 26(23): 3918–3925

Acknowledgement

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 21908054 and 21908098).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(4566 KB)

Accesses

Citations

Detail

Sections
Recommended

/