RESEARCH ARTICLE

Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture

  • Zhihong Xu ,
  • Tao Jiang ,
  • Hao Zhang ,
  • Yujun Zhao ,
  • Xinbin Ma ,
  • Shengping Wang
Expand
  • Key Laboratory for Green Chemical Technology (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 15 Feb 2020

Accepted date: 28 Jun 2020

Published date: 15 Jun 2021

Copyright

2020 Higher Education Press

Abstract

Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na+ and MgO on the structure and CO2 adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5-1.5 mm exhibited an excellent capacity for CO2 adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm3∙mol1) to CaCO3 (36.9 cm3∙mol1) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO2 capture capacity (9.49 mmol∙g1), average adsorption rate (0.32 mmol∙g1∙min1) and conversion rate of CaO (74.83%) after 30 cycles.

Cite this article

Zhihong Xu , Tao Jiang , Hao Zhang , Yujun Zhao , Xinbin Ma , Shengping Wang . Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 698 -708 . DOI: 10.1007/s11705-020-1981-2

Acknowledgements

Financial support by the National Key Research and Development Program of China (Grant No. 2017YFB0603300), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0411) are gratefully acknowledged.
1
Kheshgi H, de Coninck H, Kessels J. Carbon dioxide capture and storage: seven years after the IPCC special report. Mitigation and Adaptation Strategies for Global Change, 2012, 17(6): 563–567

DOI

2
Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z. Recent advances in solid sorbents for CO2 capture and new development trends. Energy & Environmental Science, 2014, 7(11): 3478–3518

DOI

3
Yan Y, Wang K, Clough P T, Anthony E J. Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: a review. Fuel Processing Technology, 2020, 199: 106280

DOI

4
Samanta A, Zhao A, Shimizu G K, Sarkar P, Gupta R, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463

DOI

5
Kenarsari S D, Yang D, Jiang G, Zhang S, Wang J, Russell A G, Fan M. Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3(45): 22739–22773

DOI

6
Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55

DOI

7
Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265

DOI

8
Nie L, Bai L, Chen J, Jin J, Mi J. Grafting poly(ethyleneimine) on the pore surface of poly(glycidyl methacrylate-trimethylolpropane triacrylate) for preparation of the CO2 sorbent. Energy & Fuels, 2019, 33(12): 12610–12620

DOI

9
Liu W, Wu Y, Cai T, Chen X, Liu D. Use of nanoparticles Cu/TiO(OH)2 for CO2 removal with K2CO3/KHCO3 based solution: enhanced thermal conductivity and reaction kinetics enhancing the CO2 sorption/desorption performance of K2CO3/KHCO3. Greenhouse Gases. Science and Technology, 2019, 9(1): 10–18

10
Yu H, Wang X, Shu Z, Fujii M, Al Song C. 2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures. Frontiers of Chemical Science and Engineering, 2018, 12(1): 83–93

DOI

11
Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering, 2013, 7(3): 297–302

DOI

12
Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9): 796–854

DOI

13
Kierzkowska A M, Pacciani R, Müller C R. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem, 2013, 6(7): 1130–1148

DOI

14
Li Y, Sun R, Liu H, Lu C. Cyclic CO2 capture behavior of limestone modified with pyroligneous acid (PA) during calcium looping cycles. Industrial & Engineering Chemistry Research, 2011, 50(17): 10222–10228

DOI

15
Miranda-Pizarro J, Perejón A, Valverde J M, Pérez-Maqueda L A, Sánchez-Jiménez P E. CO2 capture performance of Ca-Mg acetates at realistic calcium looping conditions. Fuel, 2017, 196(15): 497–507

DOI

16
Manovic V, Anthony E J, Grasa G, Abanades J C. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping. Energy & Fuels, 2008, 22(5): 3258–3264

DOI

17
Wu S, Li Q, Kim J N, Yi K B. Properties of a nano CaO/Al2O3 CO2 sorbent. Industrial & Engineering Chemistry Research, 2008, 47(1): 180–184

DOI

18
Guo H, Wang S, Li C, Zhao Y, Sun Q, Ma X. Incorporation of Zr into calcium oxide for CO2 capture by a simple and facile sol-gel method. Industrial & Engineering Chemistry Research, 2016, 55(29): 7873–7879

DOI

19
Han R, Gao J, Wei S, Su Y, Qin Y. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3462–3470

DOI

20
Wang K, Gu F, Clough P T, Zhao P, Anthony E J. CO2 capture performance of gluconic acid modified limestone-dolomite mixtures under realistic conditions. Energy & Fuels, 2019, 33(8): 7550–7560

DOI

21
Wang S, Shen H, Fan S, Zhao Y, Ma X, Gong J. CaO-based meshed hollow spheres for CO2 capture. Chemical Engineering Science, 2015, 135(2): 532–539

DOI

22
Feng J, Guo H, Wang S, Zhao Y, Ma X. Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance. Chemical Engineering Journal, 2017, 321(1): 401–411

DOI

23
Naeem M A, Armutlulu A, Imtiaz Q, Donat F, Schäublin R, Kierzkowska A, Müller C R. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nature Communications, 2018, 9(1): 1–11

DOI

24
MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N, Fennell P. An overview of CO2 capture technologies. Energy & Environmental Science, 2010, 3(11): 1645–1669

DOI

25
Diego M E, Arias B, Abanades J C. Investigation of the dynamic evolution of the CO2 carrying capacity of solids with time in La Pereda 1.7 MWth calcium looping pilot plant. International Journal of Greenhouse Gas Control, 2020, 92: 102856

DOI

26
Mattisson T, Lyngfelt A. A sulphur capture model for circulating fluidized-bed boilers. Chemical Engineering Science, 1998, 53(6): 1163–1173

DOI

27
Lu D Y, Hughes R W, Anthony E J. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds. Fuel Processing Technology, 2008, 89(12): 1386–1395

DOI

28
Su C, Duan L, Anthony E J. CO2 capture and attrition performance of competitive eco-friendly calcium-based pellets in fluidized bed. Greenhouse Gases. Science and Technology, 2018, 8(6): 1124–1133

29
Abanades J C, Anthony E J, Lu D Y, Salvador C, Alvarez D. Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(7): 1614–1622

DOI

30
Wang X, Li Y, Shi J, Zhao J, Wang Z, Liu H, Zhou X. Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor. Fuel Processing Technology, 2018, 180: 75–86

DOI

31
Hu Y, Qu M, Li H, Yang Y, Yang J, Qu W, Liu W. Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture. Fuel, 2019, 236(15): 1043–1049

DOI

32
Wang P, Sun J, Guo Y, Zhao C, Li W, Wang G, Lu P. Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture. Chemical Engineering Journal, 2019, 374(15): 20–28

DOI

33
Zhang Z, Pi S, He D, Qin C, Ran J. Investigation of pore-formers to modify extrusion-spheronized CaO-based pellets for CO2 capture. Processes (Basel, Switzerland), 2019, 7(2): 62

DOI

34
Li H, Qu M, Yang Y, Hu Y, Liu W. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture. Chemical Engineering Journal, 2019, 374(15): 619–625

DOI

35
Hu Y, Liu W, Peng Y, Yang Y, Sun J, Chen H, Xu M. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Processing Technology, 2017, 160(1): 70–77

DOI

36
Luo C, Zheng Y, Xu Y, Ding N, Shen Q, Zheng C. Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chemical Engineering Journal, 2015, 267(1): 111–116

DOI

37
Armutlulu A, Naeem M A, Liu H, Kim S M, Kierzkowska A, Fedorov A, Müller C R. Multishelled CaO microspheres stabilized by atomic layer deposition of Al2O3 for enhanced CO2 capture performance. Advanced Materials, 2017, 29(41): 1702896

DOI

38
Guo H, Kou X, Zhao Y, Wang S, Ma X. Role of microstructure, electron transfer, and coordination state in the CO2 capture of calcium-based sorbent by doping (Zr-Mn). Chemical Engineering Journal, 2018, 336(15): 376–385

DOI

39
Hu Y, Lu H, Liu W, Yang Y, Li H. Incorporation of CaO into inert supports for enhanced CO2 capture: A review. Chemical Engineering Journal, 2020, 396(15):125253

40
Li Z, Ouyang J, Luo G, Yao H. High-efficiency CaO-based sorbent modified by aluminate cement and organic fiber through wet mixing method. Industrial & Engineering Chemistry Research, 2019, 58(48): 22040–22047

DOI

41
Zhao P, Sun J, Li Y, Wang K, Yin Z, Zhou Z, Su Z. Synthesis of efficient CaO sorbents for CO2 capture using a simple organometallic calcium-based carbon template route. Energy & Fuels, 2016, 30(9): 7543–7550

DOI

42
Liao J, Jin B, Zhao Y, Liang Z. Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture. Chemical Engineering Journal, 2019, 372(15): 1028–1037

DOI

43
Lee B B, Ravindra P, Chan E S. Size and shape of calcium alginate beads produced by extrusion dripping. Chemical Engineering & Technology, 2013, 36(10): 1627–1642

DOI

44
Papageorgiou S K, Katsaros F K, Kouvelos E P, Nolan J W, Le Deit H, Kanellopoulos N K. Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 2006, 137(3): 1765–1772

DOI

45
Manovic V, Anthony E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environmental Science & Technology, 2008, 42(11): 4170–4174

DOI

46
Gupta H, Fan L. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035–4042

DOI

47
Wu S, Lan P. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(5): 1570–1577

DOI

Outlines

/