RESEARCH ARTICLE

Effects of functional groups for CO2 capture using metal organic frameworks

  • Chenkai Gu 1 ,
  • Yang Liu 2 ,
  • Weizhou Wang 3 ,
  • Jing Liu , 1 ,
  • Jianbo Hu 1
Expand
  • 1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
  • 3. Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China

Received date: 03 Apr 2020

Accepted date: 19 May 2020

Published date: 15 Apr 2021

Copyright

2020 Higher Education Press

Abstract

Metal organic frameworks (MOFs) are promising adsorbents for CO2 capture. Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity. In this work, the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including –SO3H, –COOH, –NH2, –OH, –CN, –CH3 and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO3H is the best-performing functional group for CO2 capture in MOFs, better than the widely used –NH2 or –F groups. The current study provides a novel route for future MOF modification toward CO2 capture.

Cite this article

Chenkai Gu , Yang Liu , Weizhou Wang , Jing Liu , Jianbo Hu . Effects of functional groups for CO2 capture using metal organic frameworks[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(2) : 437 -449 . DOI: 10.1007/s11705-020-1961-6

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51676079 and 21773104), Fundamental Research Funds for the Central Universities (No. 2019kfyR-CPY021) and China Scholarship Council (No. 201906160014).ƒ

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-1961-6 and is accessible for authorized users.
1
Zhao C, Chen X, Anthony E J, Jiang X, Duan L, Wu Y, Dong W, Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534

DOI

2
Wang M, Liu J, Shen F, Cheng H, Dai J, Long Y. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion. Applied Surface Science, 2016, 367: 485–492

DOI

3
Darensbourg D J, Chung W C, Wang K, Zhou H C. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catalysis, 2014, 4(5): 1511–1515

DOI

4
Yu J, Wang S, Yu H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions. International Journal of Greenhouse Gas Control, 2016, 50: 135–146

DOI

5
Rochelle G T. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652–1654

DOI

6
Lin Y. Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8: 21–28

DOI

7
Lin J Y. Molecular sieves for gas separation. Science, 2016, 353(6295): 121–122

DOI

8
Wu Y, Chen X, Fan M, Jiang G, Kong Y, Bland A E. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262: 1192–1198

DOI

9
Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569

DOI

10
Yang S, Liu Z, Yan X, Liu C, Zhang Z, Liu H, Chai L. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO2 catalyst. Energy & Fuels, 2019, 33(11): 11380–11388

DOI

11
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27

DOI

12
Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20

DOI

13
Liu H, Xie X, Chen H, Yang S, Liu C, Liu Z, Yang Z, Li Q, Yan X. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261: 116367

DOI

14
Zhang Z, Yao Z Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868–2899

DOI

15
Gu C, Liu J, Hu J, Wu D. Highly selective separations of C2H2/C2H4 and C2H2/C2H6 in metal-organic frameworks via pore environment design. Industrial & Engineering Chemistry Research, 2019, 58(43): 19946–19957

DOI

16
Hu J, Liu Y, Liu J, Gu C. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: a computational study. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16835

DOI

17
Li S, Chung Y G, Simon C M, Snurr R Q. High-throughput computational screening of multivariate metal–organic frameworks (MTV-MOFs) for CO2 capture. Journal of Physical Chemistry Letters, 2017, 8(24): 6135–6141

DOI

18
An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579

DOI

19
Pal A, Chand S, Das M C. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorganic Chemistry, 2017, 56(22): 13991–13997

DOI

20
Zheng S T, Bu J T, Li Y, Wu T, Zuo F, Feng P, Bu X. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Journal of the American Chemical Society, 2010, 132(48): 17062–17064

DOI

21
Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report. Chemical Society Reviews, 2011, 40(2): 498–519

DOI

22
Hu J, Liu Y, Liu J, Gu C. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 2017, 200: 244–251

DOI

23
Xiang Z, Leng S, Cao D. Functional group modification of metal-organic frameworks for CO2 capture. Journal of Physical Chemistry C, 2012, 116(19): 10573–10579

DOI

24
Zheng B, Bai J, Duan J, Wojtas L, Zaworotko M J. Enhanced CO2 binding affinity of a high-uptakerht-type metal-organic framework decorated with acylamide groups. Journal of the American Chemical Society, 2010, 133(4): 748–751

DOI

25
An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores. Journal of the American Chemical Society, 2009, 132(1): 38–39

DOI

26
Ye Y, Zhang H, Chen L, Chen S, Lin Q, Wei F, Zhang Z, Xiang S. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorganic Chemistry, 2019, 58(12): 7754–7759

DOI

27
Hu J, Liu Y, Liu J, Gu C, Wu D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256: 25–31

DOI

28
Liu Y, Liu J, Chang M, Zheng C. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study. Journal of Physical Chemistry C, 2012, 116(32): 16985–16991

DOI

29
Liu Y, Liu J, Chang M, Zheng C. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel, 2012, 95: 521–527

DOI

30
Zhang Y B, Furukawa H, Ko N, Nie W, Park H J, Okajima S, Cordova K E, Deng H, Kim J, Yaghi O M. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. Journal of the American Chemical Society, 2015, 137(7): 2641–2650

DOI

31
Accelrys Software Inc. Materials Studio Release Notes, release 4.4. Accelrys Software Inc.: San Diego, CA, 2008

32
Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, A water stable metal-organic framework with optimal features for CO2 capture. Angewandte Chemie International Edition, 2013, 52(39): 10316–10320

DOI

33
Zhou Y X, Chen Y Z, Hu Y, Huang G, Yu S H, Jiang H L. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(46): 14976–14980

DOI

34
Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37(15): 1248–1257

DOI

35
Gu C, Liu J, Hu J, Wu D. Metal-organic frameworks chelated by zinc fluorides for ultra-high affinity to acetylene during C2/C1 separations. Fuel, 2020, 266: 117037

DOI

36
Yang Y, Liu J, Wang Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79: 100844

DOI

37
Wang Z, Liu J, Yang Y, Liu F, Ding J. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst. Proceedings of the Combustion Institute, 2019, 37(3): 2967–2975

DOI

38
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. AMn2O4 (A= Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388: 121738

DOI

39
Ikeda A, Nakao Y, Sato H, Sakaki S. Binding energy of transition-metal complexes with large p-conjugate systems. Density functional theory vs post-Hartree-Fock methods. Journal of Physical Chemistry A, 2007, 111(30): 7124–7132

DOI

40
Ramsahye N, Maurin G, Bourrelly S, Llewellyn P, Serre C, Loiseau T, Devic T, Ferey G. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47(V) by density functional theory. Journal of Physical Chemistry C, 2008, 112(2): 514–520

DOI

41
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

DOI

42
Lee T B, Kim D, Jung D H, Choi S B, Yoon J H, Kim J, Choi K, Choi S H. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120(3-4): 330–335

DOI

43
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl. Journal of Hazardous Materials, 2020, 383: 121156

DOI

44
Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(7): 1676–1682

DOI

45
Rappé A K, Casewit C J, Colwell K, Goddard W III, Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035

DOI

46
Momany F A. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. Journal of Physical Chemistry, 1978, 82(5): 592–601

DOI

47
Campañá C, Mussard B, Woo T K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 2009, 5(10): 2866–2878

DOI

48
Argueta E, Shaji J, Gopalan A, Liao P, Snurr R Q, Gómez-Gualdrón D A. Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications. Journal of Chemical Theory and Computation, 2018, 14(1): 365–376

DOI

49
Manz T A, Sholl D S. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 2010, 6(8): 2455–2468

DOI

50
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197

DOI

51
Torrisi A, Bell R G, Mellot-Draznieks C. Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: a combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168: 225–238

DOI

52
Gu C, Liu J, Hu J, Wu D. Highly efficient separations of C2H2 from C2H2/CO and C2H2/H2 in metal-organic frameworks with ZnF2 chelation: a molecular simulation study. Fuel, 2020, 271: 117598

DOI

53
Steiner T, Desiraju G R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, 1998, (8): 891–892

DOI

54
Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie International Edition, 2005, 44(12): 1788–1805

DOI

55
Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994, 94(7): 1887–1930

DOI

56
Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M, Kussmann J, Lange A W, Behn A, Deng J, Feng X, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113(2): 184–215

DOI

57
Fioretos K A, Psofogiannakis G M, Froudakis G E. Ab-initio study of the adsorption and separation of NOx and SOx gases in functionalized IRMOF ligands. Journal of Physical Chemistry C, 2011, 115(50): 24906–24914

DOI

58
Gu C, Liu Y, Liu J, Hu J, Wang W. Ab initio study of gas adsorption in metal-organic frameworks modified by lithium: the significant role of Li-containing functional groups. Journal of Physical Chemistry C, 2018, 122(32): 18395–18404

DOI

59
Gu C, Liu J, Hu J, Wang W. Metal-organic frameworks grafted by univariate and multivariate heterocycles for enhancing CO2 capture: a molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(6): 2195–2205

DOI

60
Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999

DOI

61
Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67

DOI

62
Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 2009, 117(1-2): 406–413

DOI

63
Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337

DOI

Outlines

/