Frontiers of Chemical Science and Engineering >
Effects of functional groups for CO2 capture using metal organic frameworks
Received date: 03 Apr 2020
Accepted date: 19 May 2020
Published date: 15 Apr 2021
Copyright
Metal organic frameworks (MOFs) are promising adsorbents for CO2 capture. Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity. In this work, the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including –SO3H, –COOH, –NH2, –OH, –CN, –CH3 and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO3H is the best-performing functional group for CO2 capture in MOFs, better than the widely used –NH2 or –F groups. The current study provides a novel route for future MOF modification toward CO2 capture.
Key words: metal-organic frameworks; functional groups; CO2 capture; GCMC; DFT
Chenkai Gu , Yang Liu , Weizhou Wang , Jing Liu , Jianbo Hu . Effects of functional groups for CO2 capture using metal organic frameworks[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(2) : 437 -449 . DOI: 10.1007/s11705-020-1961-6
1 |
Zhao C, Chen X, Anthony E J, Jiang X, Duan L, Wu Y, Dong W, Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534
|
2 |
Wang M, Liu J, Shen F, Cheng H, Dai J, Long Y. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion. Applied Surface Science, 2016, 367: 485–492
|
3 |
Darensbourg D J, Chung W C, Wang K, Zhou H C. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catalysis, 2014, 4(5): 1511–1515
|
4 |
Yu J, Wang S, Yu H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions. International Journal of Greenhouse Gas Control, 2016, 50: 135–146
|
5 |
Rochelle G T. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652–1654
|
6 |
Lin Y. Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8: 21–28
|
7 |
Lin J Y. Molecular sieves for gas separation. Science, 2016, 353(6295): 121–122
|
8 |
Wu Y, Chen X, Fan M, Jiang G, Kong Y, Bland A E. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262: 1192–1198
|
9 |
Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
|
10 |
Yang S, Liu Z, Yan X, Liu C, Zhang Z, Liu H, Chai L. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO2 catalyst. Energy & Fuels, 2019, 33(11): 11380–11388
|
11 |
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27
|
12 |
Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20
|
13 |
Liu H, Xie X, Chen H, Yang S, Liu C, Liu Z, Yang Z, Li Q, Yan X. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261: 116367
|
14 |
Zhang Z, Yao Z Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868–2899
|
15 |
Gu C, Liu J, Hu J, Wu D. Highly selective separations of C2H2/C2H4 and C2H2/C2H6 in metal-organic frameworks via pore environment design. Industrial & Engineering Chemistry Research, 2019, 58(43): 19946–19957
|
16 |
Hu J, Liu Y, Liu J, Gu C. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: a computational study. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16835
|
17 |
Li S, Chung Y G, Simon C M, Snurr R Q. High-throughput computational screening of multivariate metal–organic frameworks (MTV-MOFs) for CO2 capture. Journal of Physical Chemistry Letters, 2017, 8(24): 6135–6141
|
18 |
An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
|
19 |
Pal A, Chand S, Das M C. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorganic Chemistry, 2017, 56(22): 13991–13997
|
20 |
Zheng S T, Bu J T, Li Y, Wu T, Zuo F, Feng P, Bu X. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Journal of the American Chemical Society, 2010, 132(48): 17062–17064
|
21 |
Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report. Chemical Society Reviews, 2011, 40(2): 498–519
|
22 |
Hu J, Liu Y, Liu J, Gu C. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 2017, 200: 244–251
|
23 |
Xiang Z, Leng S, Cao D. Functional group modification of metal-organic frameworks for CO2 capture. Journal of Physical Chemistry C, 2012, 116(19): 10573–10579
|
24 |
Zheng B, Bai J, Duan J, Wojtas L, Zaworotko M J. Enhanced CO2 binding affinity of a high-uptake
|
25 |
An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores. Journal of the American Chemical Society, 2009, 132(1): 38–39
|
26 |
Ye Y, Zhang H, Chen L, Chen S, Lin Q, Wei F, Zhang Z, Xiang S. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorganic Chemistry, 2019, 58(12): 7754–7759
|
27 |
Hu J, Liu Y, Liu J, Gu C, Wu D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256: 25–31
|
28 |
Liu Y, Liu J, Chang M, Zheng C. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study. Journal of Physical Chemistry C, 2012, 116(32): 16985–16991
|
29 |
Liu Y, Liu J, Chang M, Zheng C. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel, 2012, 95: 521–527
|
30 |
Zhang Y B, Furukawa H, Ko N, Nie W, Park H J, Okajima S, Cordova K E, Deng H, Kim J, Yaghi O M. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. Journal of the American Chemical Society, 2015, 137(7): 2641–2650
|
31 |
Accelrys Software Inc. Materials Studio Release Notes, release 4.4. Accelrys Software Inc.: San Diego, CA, 2008
|
32 |
Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L,
|
33 |
Zhou Y X, Chen Y Z, Hu Y, Huang G, Yu S H, Jiang H L. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(46): 14976–14980
|
34 |
Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37(15): 1248–1257
|
35 |
Gu C, Liu J, Hu J, Wu D. Metal-organic frameworks chelated by zinc fluorides for ultra-high affinity to acetylene during C2/C1 separations. Fuel, 2020, 266: 117037
|
36 |
Yang Y, Liu J, Wang Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79: 100844
|
37 |
Wang Z, Liu J, Yang Y, Liu F, Ding J. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst. Proceedings of the Combustion Institute, 2019, 37(3): 2967–2975
|
38 |
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. AMn2O4 (A= Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388: 121738
|
39 |
Ikeda A, Nakao Y, Sato H, Sakaki S. Binding energy of transition-metal complexes with large p-conjugate systems. Density functional theory vs post-Hartree-Fock methods. Journal of Physical Chemistry A, 2007, 111(30): 7124–7132
|
40 |
Ramsahye N, Maurin G, Bourrelly S, Llewellyn P, Serre C, Loiseau T, Devic T, Ferey G. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47(V) by density functional theory. Journal of Physical Chemistry C, 2008, 112(2): 514–520
|
41 |
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
|
42 |
Lee T B, Kim D, Jung D H, Choi S B, Yoon J H, Kim J, Choi K, Choi S H. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120(3-4): 330–335
|
43 |
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl. Journal of Hazardous Materials, 2020, 383: 121156
|
44 |
Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(7): 1676–1682
|
45 |
Rappé A K, Casewit C J, Colwell K, Goddard W III, Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035
|
46 |
Momany F A. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. Journal of Physical Chemistry, 1978, 82(5): 592–601
|
47 |
Campañá C, Mussard B, Woo T K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 2009, 5(10): 2866–2878
|
48 |
Argueta E, Shaji J, Gopalan A, Liao P, Snurr R Q, Gómez-Gualdrón D A. Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications. Journal of Chemical Theory and Computation, 2018, 14(1): 365–376
|
49 |
Manz T A, Sholl D S. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 2010, 6(8): 2455–2468
|
50 |
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197
|
51 |
Torrisi A, Bell R G, Mellot-Draznieks C. Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: a combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168: 225–238
|
52 |
Gu C, Liu J, Hu J, Wu D. Highly efficient separations of C2H2 from C2H2/CO and C2H2/H2 in metal-organic frameworks with ZnF2 chelation: a molecular simulation study. Fuel, 2020, 271: 117598
|
53 |
Steiner T, Desiraju G R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, 1998, (8): 891–892
|
54 |
Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie International Edition, 2005, 44(12): 1788–1805
|
55 |
Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994, 94(7): 1887–1930
|
56 |
Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M, Kussmann J, Lange A W, Behn A, Deng J, Feng X, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113(2): 184–215
|
57 |
Fioretos K A, Psofogiannakis G M, Froudakis G E. Ab-initio study of the adsorption and separation of NOx and SOx gases in functionalized IRMOF ligands. Journal of Physical Chemistry C, 2011, 115(50): 24906–24914
|
58 |
Gu C, Liu Y, Liu J, Hu J, Wang W. Ab initio study of gas adsorption in metal-organic frameworks modified by lithium: the significant role of Li-containing functional groups. Journal of Physical Chemistry C, 2018, 122(32): 18395–18404
|
59 |
Gu C, Liu J, Hu J, Wang W. Metal-organic frameworks grafted by univariate and multivariate heterocycles for enhancing CO2 capture: a molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(6): 2195–2205
|
60 |
Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999
|
61 |
Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
|
62 |
Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 2009, 117(1-2): 406–413
|
63 |
Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
|
/
〈 | 〉 |