Effects of functional groups for CO2 capture using metal organic frameworks
Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu
Effects of functional groups for CO2 capture using metal organic frameworks
Metal organic frameworks (MOFs) are promising adsorbents for CO2 capture. Functional groups on organic linkers of MOFs play important roles in improving the CO2 capture ability by enhancing the CO2 sorption affinity. In this work, the functionalization effects on CO2 adsorption were systematically investigated by rationally incorporating various functional groups including –SO3H, –COOH, –NH2, –OH, –CN, –CH3 and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO2 adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO2 and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO3H is the best-performing functional group for CO2 capture in MOFs, better than the widely used –NH2 or –F groups. The current study provides a novel route for future MOF modification toward CO2 capture.
metal-organic frameworks / functional groups / CO2 capture / GCMC / DFT
[1] |
Zhao C, Chen X, Anthony E J, Jiang X, Duan L, Wu Y, Dong W, Zhao C. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515–534
CrossRef
Google scholar
|
[2] |
Wang M, Liu J, Shen F, Cheng H, Dai J, Long Y. Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion. Applied Surface Science, 2016, 367: 485–492
CrossRef
Google scholar
|
[3] |
Darensbourg D J, Chung W C, Wang K, Zhou H C. Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catalysis, 2014, 4(5): 1511–1515
CrossRef
Google scholar
|
[4] |
Yu J, Wang S, Yu H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions. International Journal of Greenhouse Gas Control, 2016, 50: 135–146
CrossRef
Google scholar
|
[5] |
Rochelle G T. Amine scrubbing for CO2 capture. Science, 2009, 325(5948): 1652–1654
CrossRef
Google scholar
|
[6] |
Lin Y. Metal organic framework membranes for separation applications. Current Opinion in Chemical Engineering, 2015, 8: 21–28
CrossRef
Google scholar
|
[7] |
Lin J Y. Molecular sieves for gas separation. Science, 2016, 353(6295): 121–122
CrossRef
Google scholar
|
[8] |
Wu Y, Chen X, Fan M, Jiang G, Kong Y, Bland A E. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid. Chemical Engineering Journal, 2015, 262: 1192–1198
CrossRef
Google scholar
|
[9] |
Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
CrossRef
Google scholar
|
[10] |
Yang S, Liu Z, Yan X, Liu C, Zhang Z, Liu H, Chai L. Catalytic oxidation of elemental mercury in coal-combustion flue gas over the CuAlO2 catalyst. Energy & Fuels, 2019, 33(11): 11380–11388
CrossRef
Google scholar
|
[11] |
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27
CrossRef
Google scholar
|
[12] |
Figueroa J D, Fout T, Plasynski S, McIlvried H, Srivastava R D. Advances in CO2 capture technology—the US department of energy’s carbon sequestration program. International Journal of Greenhouse Gas Control, 2008, 2(1): 9–20
CrossRef
Google scholar
|
[13] |
Liu H, Xie X, Chen H, Yang S, Liu C, Liu Z, Yang Z, Li Q, Yan X. SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261: 116367
CrossRef
Google scholar
|
[14] |
Zhang Z, Yao Z Z, Xiang S, Chen B. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy & Environmental Science, 2014, 7(9): 2868–2899
CrossRef
Google scholar
|
[15] |
Gu C, Liu J, Hu J, Wu D. Highly selective separations of C2H2/C2H4 and C2H2/C2H6 in metal-organic frameworks via pore environment design. Industrial & Engineering Chemistry Research, 2019, 58(43): 19946–19957
CrossRef
Google scholar
|
[16] |
Hu J, Liu Y, Liu J, Gu C. Chelation of transition metals into MOFs as a promising method for enhancing CO2 capture: a computational study. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16835
CrossRef
Google scholar
|
[17] |
Li S, Chung Y G, Simon C M, Snurr R Q. High-throughput computational screening of multivariate metal–organic frameworks (MTV-MOFs) for CO2 capture. Journal of Physical Chemistry Letters, 2017, 8(24): 6135–6141
CrossRef
Google scholar
|
[18] |
An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
CrossRef
Google scholar
|
[19] |
Pal A, Chand S, Das M C. A water-stable twofold interpenetrating microporous MOF for selective CO2 adsorption and separation. Inorganic Chemistry, 2017, 56(22): 13991–13997
CrossRef
Google scholar
|
[20] |
Zheng S T, Bu J T, Li Y, Wu T, Zuo F, Feng P, Bu X. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. Journal of the American Chemical Society, 2010, 132(48): 17062–17064
CrossRef
Google scholar
|
[21] |
Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report. Chemical Society Reviews, 2011, 40(2): 498–519
CrossRef
Google scholar
|
[22] |
Hu J, Liu Y, Liu J, Gu C. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: the significant role of functional groups. Fuel, 2017, 200: 244–251
CrossRef
Google scholar
|
[23] |
Xiang Z, Leng S, Cao D. Functional group modification of metal-organic frameworks for CO2 capture. Journal of Physical Chemistry C, 2012, 116(19): 10573–10579
CrossRef
Google scholar
|
[24] |
Zheng B, Bai J, Duan J, Wojtas L, Zaworotko M J. Enhanced CO2 binding affinity of a high-uptake
CrossRef
Google scholar
|
[25] |
An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores. Journal of the American Chemical Society, 2009, 132(1): 38–39
CrossRef
Google scholar
|
[26] |
Ye Y, Zhang H, Chen L, Chen S, Lin Q, Wei F, Zhang Z, Xiang S. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorganic Chemistry, 2019, 58(12): 7754–7759
CrossRef
Google scholar
|
[27] |
Hu J, Liu Y, Liu J, Gu C, Wu D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256: 25–31
CrossRef
Google scholar
|
[28] |
Liu Y, Liu J, Chang M, Zheng C. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study. Journal of Physical Chemistry C, 2012, 116(32): 16985–16991
CrossRef
Google scholar
|
[29] |
Liu Y, Liu J, Chang M, Zheng C. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel, 2012, 95: 521–527
CrossRef
Google scholar
|
[30] |
Zhang Y B, Furukawa H, Ko N, Nie W, Park H J, Okajima S, Cordova K E, Deng H, Kim J, Yaghi O M. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. Journal of the American Chemical Society, 2015, 137(7): 2641–2650
CrossRef
Google scholar
|
[31] |
Accelrys Software Inc. Materials Studio Release Notes, release 4.4. Accelrys Software Inc.: San Diego, CA, 2008
|
[32] |
Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L,
CrossRef
Google scholar
|
[33] |
Zhou Y X, Chen Y Z, Hu Y, Huang G, Yu S H, Jiang H L. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(46): 14976–14980
CrossRef
Google scholar
|
[34] |
Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37(15): 1248–1257
CrossRef
Google scholar
|
[35] |
Gu C, Liu J, Hu J, Wu D. Metal-organic frameworks chelated by zinc fluorides for ultra-high affinity to acetylene during C2/C1 separations. Fuel, 2020, 266: 117037
CrossRef
Google scholar
|
[36] |
Yang Y, Liu J, Wang Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion. Progress in Energy and Combustion Science, 2020, 79: 100844
CrossRef
Google scholar
|
[37] |
Wang Z, Liu J, Yang Y, Liu F, Ding J. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO2 catalyst. Proceedings of the Combustion Institute, 2019, 37(3): 2967–2975
CrossRef
Google scholar
|
[38] |
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. AMn2O4 (A= Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas. Journal of Hazardous Materials, 2020, 388: 121738
CrossRef
Google scholar
|
[39] |
Ikeda A, Nakao Y, Sato H, Sakaki S. Binding energy of transition-metal complexes with large p-conjugate systems. Density functional theory vs post-Hartree-Fock methods. Journal of Physical Chemistry A, 2007, 111(30): 7124–7132
CrossRef
Google scholar
|
[40] |
Ramsahye N, Maurin G, Bourrelly S, Llewellyn P, Serre C, Loiseau T, Devic T, Ferey G. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47(V) by density functional theory. Journal of Physical Chemistry C, 2008, 112(2): 514–520
CrossRef
Google scholar
|
[41] |
Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
CrossRef
Google scholar
|
[42] |
Lee T B, Kim D, Jung D H, Choi S B, Yoon J H, Kim J, Choi K, Choi S H. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120(3-4): 330–335
CrossRef
Google scholar
|
[43] |
Wang Z, Liu J, Yang Y, Yu Y, Yan X, Zhang Z. Insights into the catalytic behavior of LaMnO3 perovskite for Hg0 oxidation by HCl. Journal of Hazardous Materials, 2020, 383: 121156
CrossRef
Google scholar
|
[44] |
Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(7): 1676–1682
CrossRef
Google scholar
|
[45] |
Rappé A K, Casewit C J, Colwell K, Goddard W III, Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035
CrossRef
Google scholar
|
[46] |
Momany F A. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. Journal of Physical Chemistry, 1978, 82(5): 592–601
CrossRef
Google scholar
|
[47] |
Campañá C, Mussard B, Woo T K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. Journal of Chemical Theory and Computation, 2009, 5(10): 2866–2878
CrossRef
Google scholar
|
[48] |
Argueta E, Shaji J, Gopalan A, Liao P, Snurr R Q, Gómez-Gualdrón D A. Molecular building block-based electronic charges for high-throughput screening of metal-organic frameworks for adsorption applications. Journal of Chemical Theory and Computation, 2018, 14(1): 365–376
CrossRef
Google scholar
|
[49] |
Manz T A, Sholl D S. Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials. Journal of Chemical Theory and Computation, 2010, 6(8): 2455–2468
CrossRef
Google scholar
|
[50] |
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197
CrossRef
Google scholar
|
[51] |
Torrisi A, Bell R G, Mellot-Draznieks C. Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: a combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168: 225–238
CrossRef
Google scholar
|
[52] |
Gu C, Liu J, Hu J, Wu D. Highly efficient separations of C2H2 from C2H2/CO and C2H2/H2 in metal-organic frameworks with ZnF2 chelation: a molecular simulation study. Fuel, 2020, 271: 117598
CrossRef
Google scholar
|
[53] |
Steiner T, Desiraju G R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chemical Communications, 1998, (8): 891–892
CrossRef
Google scholar
|
[54] |
Paulini R, Müller K, Diederich F. Orthogonal multipolar interactions in structural chemistry and biology. Angewandte Chemie International Edition, 2005, 44(12): 1788–1805
CrossRef
Google scholar
|
[55] |
Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994, 94(7): 1887–1930
CrossRef
Google scholar
|
[56] |
Shao Y, Gan Z, Epifanovsky E, Gilbert A T B, Wormit M, Kussmann J, Lange A W, Behn A, Deng J, Feng X, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113(2): 184–215
CrossRef
Google scholar
|
[57] |
Fioretos K A, Psofogiannakis G M, Froudakis G E. Ab-initio study of the adsorption and separation of NOx and SOx gases in functionalized IRMOF ligands. Journal of Physical Chemistry C, 2011, 115(50): 24906–24914
CrossRef
Google scholar
|
[58] |
Gu C, Liu Y, Liu J, Hu J, Wang W. Ab initio study of gas adsorption in metal-organic frameworks modified by lithium: the significant role of Li-containing functional groups. Journal of Physical Chemistry C, 2018, 122(32): 18395–18404
CrossRef
Google scholar
|
[59] |
Gu C, Liu J, Hu J, Wang W. Metal-organic frameworks grafted by univariate and multivariate heterocycles for enhancing CO2 capture: a molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(6): 2195–2205
CrossRef
Google scholar
|
[60] |
Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999
CrossRef
Google scholar
|
[61] |
Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research, 2010, 43(1): 58–67
CrossRef
Google scholar
|
[62] |
Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 2009, 117(1-2): 406–413
CrossRef
Google scholar
|
[63] |
Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón D A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chemistry of Materials, 2018, 30(18): 6325–6337
CrossRef
Google scholar
|
/
〈 | 〉 |