Front. Chem. Sci. Eng. All Journals
REVIEW ARTICLE

Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization

  • Tong Zhang , 1,2,3 ,
  • Shan-Jiang Wang 1,3 ,
  • Xiao-Yang Zhang 1,2,3 ,
  • Ming Fu 1 ,
  • Yi Yang 1 ,
  • Wen Chen 1 ,
  • Dan Su 2,3
Expand
  • 1. Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • 2. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
  • 3. Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou 215123, China

Received date: 09 Jan 2020

Accepted date: 19 Mar 2020

Published date: 15 Feb 2021

Copyright

2020 Higher Education Press

Abstract

Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.

Cite this article

Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Frontiers of Chemical Science and Engineering, 2021, 15(1): 35-48. DOI: 10.1007/s11705-020-1937-6

Acknowledgements

This work is supported by Ministry of Science and Technology of the People’s Republic of China under Grant Number 2017YFA0205800, the National Natural Science Foundation of China (Grant Nos. 61875241, 11734005) and the Fundamental Research Funds for the Central Universities, Southeast University (Grant Nos. 2242018k1G020, 2242019k1G034).
1
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

DOI

2
Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172

DOI

3
Ra’di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design and realizations. Physical Review Applied, 2015, 3(3): 037001

DOI

4
Hajian H, Ghobadi A, Butun B, Ozbay E. Active metamaterial nearly perfect light absorbers: a review. Journal of the Optical Society of America. B, Optical Physics, 2019, 36(8): F131–F143

DOI

5
Yang X, Sun Z, Low T, Hu H, Guo X D, García de Abajo F J, Avouris P, Dai Q. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896

DOI

6
Zhai Y, Chen G, Ji J, Ma X, Wu Z, Li Y, Wang Q. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Nanotechnology, 2019, 30(37): 375201

DOI

7
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343

DOI

8
Yang M Q, Gao M, Hong M, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894

DOI

9
Rhee J Y, Yoo Y J, Kim K W, Kim Y J, Lee Y P. Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1541–1580

DOI

10
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108

DOI

11
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530

DOI

12
Baranwal A, Srivastava A, Kumar P, Bajpai V K, Maurya P K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 2018, 9: 422

DOI

13
Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2(1): 517

DOI

14
Ng C, Cadusch J J, Dligatch S, Roberts A, Davis T J, Mulvaney P, Gómez D E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10(4): 4704–4711

DOI

15
Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27(4): 5326–5336

DOI

16
Azad A K, Kort-Kamp W J M, Sykora M, Weisse-Bernstein N R, Luk T S, Taylor A J, Dalvit D A R, Chen H T. Metasurface broadband solar absorber. Scientific Reports, 2016, 6(1): 20347

DOI

17
Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang Z G, Zhang O Z, Ade H, Li Y. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chemistry of Materials, 2017, 29(23): 10130–10138

DOI

18
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645

DOI

19
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

DOI

20
Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8(5): 823–832

DOI

21
Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y, Hitz E, Luo W, Lu M, Yang B, Hu L. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028

DOI

22
Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro-and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881

DOI

23
Buller S, Strunk J. Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25(2): 171–190

DOI

24
Zhang N, Han C, Fu X, Xu Y J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond. Chem, 2018, 4(8): 1832–1861

DOI

25
Wang S J, Su D, Zhang T. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401

26
Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon P C, Mandel H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Physics, 2003, 214(1): 1–22

DOI

27
Thuillier G, Hersé M, Simon P C, Labs D, Mandel H, Gillotay D, Petermans W. The absolute solar spectral irradiance from 200 to 2500nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 2000, 25(5-6): 375–377

DOI

28
Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, Tanemura S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7691–7709

DOI

29
Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Global Challenges, 2018, 2(2): 1700094

DOI

30
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

DOI

31
Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Advanced Energy Materials, 2017, 7(23): 1700473

DOI

32
Zhang T, Wang S J, Zhang X Y, Su D, Yang Y, Wu J Y, Xu Y Y, Zhao N. Progress in the utilization efficiency improvement of hot carriers in plasmon-mediated heterostructure photocatalysis. Applied Sciences (Basel, Switzerland), 2019, 9(10): 2093

DOI

33
Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 2017, 6(1): 177–191

DOI

34
Ji C, Lee K T, Xu T, Zhou J, Park H J, Guo L J. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials, 2017, 5(20): 1700368

DOI

35
Baranov D G, Xiao Y, Nechepurenko I A, Krasnok A, Alù A, Kats M A. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920–930

DOI

36
Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z. Broadband metamaterial absorbers. Advanced Optical Materials, 2019, 7(3): 1800995

DOI

37
Kim J U, Lee S, Kang S J, Kim T. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10(46): 21555–21574

DOI

38
Gao M, Zhu L, Peh C K, Ho J W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864

DOI

39
Wang Y, Xu N, Li D, Zhu J. Thermal properties of two dimensional layered materials. Advanced Functional Materials, 2017, 27(19): 1604134

DOI

40
Long R, Li Y, Song L, Xiong Y. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32): 3873–3889

DOI

41
Cushing S K, Wu N. Progress and perspectives of plasmon-enhanced solar energy conversion. Journal of Physical Chemistry Letters, 2016, 7(4): 666–675

DOI

42
Sharma G, Thakur B, Naushad M, Kumar A, Stadler F J, Alfadul S M, Mola G T. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16(1): 113–146

DOI

43
Fan R H, Xiong B, Peng R W, Wang M. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 2019, DOI: http://doi.org/10.1002/adma.201904646

44
Ghobadi A, Hajian H, Butun B, Ozbay E. Strong interference in planar, multilayer perfect absorbers: achieving high-operational performances in visible and near-infrared regimes. IEEE Nanotechnology Magazine, 2019, 13(4): 1–16

DOI

45
Li Y, Jin X, Zheng Y, Li W, Zheng F, Wang W, Lin T, Zhu Z. Tunable water delivery in carbon-coated fabrics for high efficiency solar vapor generation. ACS Applied Materials & Interfaces, 2019, 11(50): 46938–46946

DOI

46
Liu Z, Song H, Ji D, Li C, Cheney A, Liu Y, Zhang N, Zeng X, Chen B, Gao J, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017, 1(2): 1600003

DOI

47
Li H, Wu L, Zhang H, Dai W, Hao J, Wu H, Ren F, Liu C. Self-assembly of carbon black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces, 2020, 12(3): 4081–4087

DOI

48
Yang Z P, Ci L, Bur J A, Lin S Y, Ajayan P M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008, 8(2): 446–451

DOI

49
Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981

DOI

50
Lamy-Mendes A, Silva R F, Durães L. Advances in carbon nanostructure-silica aerogel composites: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(4): 1340–1369

DOI

51
Yang F, Zhang Y, Yang X, Zhong M, Yi Z, Liu X, Kang X, Luo J, Li J, Wang C Y, et al. Enhanced photothermal effect in ultralow-density carbon aerogels with microporous structures for facile optical ignition applications. ACS Applied Materials & Interfaces, 2019, 11(7): 7250–7260

DOI

52
Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano, 2016, 10(10): 9123–9128

DOI

53
Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R. Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129: 598–606

DOI

54
Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, Liang W, Li A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Advanced Energy Materials, 2019, 9(1): 1802158

DOI

55
Anguita J V, Ahmad M, Haq S, Allam J P, Silva S R. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2(2): e1501238

DOI

56
Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16359–16368

DOI

57
Liu K K, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681

DOI

58
Liu F, Wang L, Bradley R, Zhao B, Wu W. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Advances, 2019, 9(50): 29414–29423

DOI

59
Liu F, Zhao B, Wu W, Yang H, Ning Y, Lai Y, Bradley R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266

DOI

60
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951

DOI

61
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951

DOI

62
Wang L L, Zhu G, Wei Y, Zeng J, Yu X, Li Q, Xie H. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Solar Energy Materials and Solar Cells, 2018, 184: 1–8

DOI

63
Liu F, Lai Y, Zhao B, Bradley R, Wu W. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653

DOI

64
Bao Q, Loh K P. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

DOI

65
Mo Z, Xu H, Chen Z, She X, Song Y, Wu J, Yan P, Xu L, Lei Y, Yuan S, Li H. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225: 154–161

DOI

66
Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227

DOI

67
Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Advances, 2017, 7(1): 8–19

DOI

68
Chan G H, Zhao J, Hicks E M, Schatz G C, Van Duyne R P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947–1952

DOI

69
Zhang X Y, Zhou H L, Shan F, Xue X M, Su D, Liu Y R, Chen Y Z, Wu J Y, Zhang T. Synthesis of silver nanoplate based two-dimension plasmonic platform from 25 nm to 40 mm: growth mechanism and optical characteristic investigation in situ. RSC Advances, 2017, 7(88): 55680–55690

DOI

70
Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414–6420

DOI

71
Zhou Y, Yu S H, Wang C Y, Li X G, Zhu Y R, Chen Z Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850–852

DOI

72
Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y, Duley W W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano, 2011, 5(11): 9082–9092

DOI

73
Brown A M, Sundararaman R, Narang P, Goddard W A III, Atwater H A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2016, 10(1): 957–966

DOI

74
Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S K, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011, 23(45): 5410–5414

DOI

75
Zhang H, Guan C, Luo J, Yuan Y, Song N, Zhang Y, Fang J, Liu H. Facile film-nanoctahedron assembly route to plasmonic metamaterial absorbers at visible frequencies. ACS Applied Materials & Interfaces, 2019, 11(22): 20241–20248

DOI

76
Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015, 7(8): 4962–4968

DOI

77
Meudt M, Jakob T, Polywka A, Stegers L, Kropp S, Runke S, Zang M, Clemens M, Görrn P. Plasmonic black metasurface by transfer printing. Advanced Materials Technologies, 2018, 3(11): 1800124

DOI

78
Berean K J, Sivan V, Khodasevych I, Boes A, Della Gaspera E, Field M R, Kalantar-Zadeh K, Mitchell A, Rosengarten G. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption. Advanced Optical Materials, 2016, 4(8): 1247–1254

DOI

79
Fan P, Wu H, Zhong M, Zhang H, Bai B, Jin G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale, 2016, 8(30): 14617–14624

DOI

80
Li Y, Li D, Zhou D, Chi C, Yang S, Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL, 2018, 2(8): 1800057

DOI

81
Yu W, Lu Y, Chen X, Xu H, Shao J, Chen X, Sun Y, Hao J, Dai N. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Advanced Optical Materials, 2019, 7(20): 1900841

DOI

82
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104

DOI

83
Hedayati M K, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics. A, Materials Science & Processing, 2012, 109(4): 769–773

DOI

84
Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43(12): 2981–2984

DOI

85
Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403

DOI

86
Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6(1): 30650

DOI

87
Mulla B, Sabah C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics, 2016, 11(5): 1313–1321

DOI

88
Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B, Levy U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2(4): 335–338

DOI

89
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103

DOI

90
Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters, 2012, 12(3): 1443–1447

DOI

91
Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42(3): 450–453

DOI

92
Ho K H W, Shang A, Shi F, Lo T W, Yeung P H, Yu Y S, Zhang X, Wong K, Lei D Y. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction. Advanced Functional Materials, 2018, 28(34): 1800383

DOI

93
Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(5): 989–999

DOI

94
Shan F, Zhang X Y, Fu X C, Zhang L J, Su D, Wang S J, Wu J Y, Zhang T. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7(1): 6813

DOI

95
Zhang X Y, Zhang T, Zhu S Q, Wang L D, Liu X, Wang Q L, Song Y J. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Research Letters, 2012, 7(1): 596

DOI

96
Karampelas I H, Liu K, Alali F, Furlani E P. Plasmonic nanoframes for photothermal energy conversion. Journal of Physical Chemistry C, 2016, 120(13): 7256–7264

DOI

97
Gao M, Peh C K, Phan H T, Zhu L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 2018, 8(25): 1800711

DOI

98
Wang L D, Zhang T, Zhang X Y, Li R Z, Zhu S Q, Wang L N. Synthesis of ultra-thin gold nanosheets composed of steadily linked dense nanoparticle arrays using magnetron sputtering. Nanoscience and Nanotechnology Letters, 2013, 5(2): 257–260

DOI

99
Piragash R M K, Venkatesh A, Moorthy V H S. Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 2019, 14(2): 365–374

DOI

100
Li M, Guler U, Li Y, Rea A, Tanyi E K, Kim Y, Noginov M A, Song Y, Boltasseva A, Shalaev V M, Kotov N A. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Letters, 2018, 3(7): 1578–1583

DOI

101
Chang C C, Nogan J, Yang Z P, Kort-Kamp W J M, Ross W, Luk T S, Dalvit D A R, Azad A K, Chen H T. Highly plasmonic titanium nitride by room-temperature sputtering. Scientific Reports, 2019, 9(1): 15287

DOI

102
Nagarajan A, Vivek K, Shah M, Achanta V G, Gerini G. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 2018, 6(16): 1800253

DOI

103
Kharitonov A, Kharintsev S. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON. Optical Materials Express, 2020, 10(2): 513–531

DOI

104
Bhattacharjee A, Ahmaruzzaman M. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 2016, 6(47): 41348–41363

DOI

105
Yin X, Zhang Y, Guo Q, Cai X, Xiao J, Ding Z, Yang J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Applied Materials & Interfaces, 2018, 10(13): 10998–11007

DOI

106
Devlin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478

DOI

107
Wang S, Chen F, Ji R, Hou M, Yi F, Zheng W, Zhang T, Lu W. Large-area low-cost dielectric perfect absorber by one-step sputtering. Advanced Optical Materials, 2019, 7(9): 1801596

DOI

108
Han S, Shin J H, Jung P H, Lee H, Lee B J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Advanced Optical Materials, 2016, 4(8): 1265–1273

DOI

109
Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 2013, 25(17): 2385–2396

DOI

110
Song G, Yuan Y, Liu J, Liu Q, Zhang W, Fang J, Gu J, Ma D, Zhang D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Advanced Sustainable Systems, 2019, 3(6): 1900003

DOI

111
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539

DOI

112
Wang K, Xing Z, Du M, Zhang S, Li Z, Pan K, Zhou W. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal-photocatalytic performance. Catalysis Science & Technology, 2019, 9(23): 6714–6722

DOI

113
Dong W, Qiu Y, Yang J, Simpson R E, Cao T. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. Journal of Physical Chemistry C, 2016, 120(23): 12713–12722

DOI

114
Wang M, Zhang J, Wang P, Li C, Xu X, Jin Y. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11(7): 3854–3863

DOI

115
Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

DOI

116
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779

DOI

117
Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693

DOI

118
Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066

DOI

119
Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H, Poulikakos D. Metasurfaces leveraging solar energy for icephobicity. ACS Nano, 2018, 12(7): 7009–7017

DOI

120
Huang J, Liu C, Zhu Y, Masala S, Alarousu E, Han Y, Fratalocchi A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11(1): 60121

DOI

121
Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T J, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126

DOI

122
Li J, Du M, Lv G, Zhou L, Li X, Bertoluzzi L, Liu C, Zhu S, Zhu J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159

DOI

123
Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031

DOI

124
Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41: 201–209

DOI

125
Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762

DOI

126
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160

DOI

127
Wang X, He Y, Liu X, Cheng G, Zhu J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 2017, 195: 414–425

DOI

128
Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947

DOI

129
Dongare P D, Alabastri A, Neumann O, Nordlander P, Halas N J. Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13182–13187

DOI

130
Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149: 401–408

DOI

131
Wang X, Ou G, Wang N, Wu H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Applied Materials & Interfaces, 2016, 8(14): 9194–9199

DOI

132
Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43(1): 473–486

DOI

133
Aslam U, Rao V G, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 2018, 1(9): 656–665

DOI

134
Zheng Z, Xie W, Huang B, Dai Y. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333

DOI

135
Ghobadi T G U, Ghobadi A, Ozbay E, Karadas F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem, 2018, 2(3): 161–182

DOI

136
Xiao Q, Connell T U, Cadusch J J, Roberts A, Chesman A S R, Gómez D E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catalysis, 2018, 8(11): 10331–10339

DOI

137
Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro L V, Govorov A O, Kildishev A V, Boltasseva A, Shalaev V M. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 2017, 5(15): 1601031

DOI

138
Li X, Shang J, Wang Z. Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37(2): 170–185

DOI

139
Kreder M J, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews. Materials, 2016, 1(1): 1–15

DOI

140
Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation. Science Advances, 2018, 4(8): eaat0127

141
Yang Z, Han X, Lee H K, Phan-Quang G C, Koh C S L, Lay C L, Lee Y H, Miao Y E, Liu T, Phang I Y, Ling X Y. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10(34): 16005–16012

DOI

142
Barho F B, Gonzalez-Posada F, Bomers M, Mezy A, Cerutti L, Taliercio T. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics, 2019, 6(6): 1506–1514

DOI

143
Chandrashekara M. Experimental analysis of high temperature solar selective coated box type receiver for desalination. International Journal of Ambient Energy, 2020, DOI: 10.1080/01430750.2020.1718752

144
Li Y, Choi S S, Yang C. Dish-Stirling solar power plants: Modeling, analysis, and control of receiver temperature. IEEE Transactions on Sustainable Energy, 2014, 5(2): 398–407

DOI

/