Frontiers of Chemical Science and Engineering >
Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization
Received date: 09 Jan 2020
Accepted date: 19 Mar 2020
Published date: 15 Feb 2021
Copyright
Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.
Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Frontiers of Chemical Science and Engineering, 2021, 15(1): 35-48. DOI: 10.1007/s11705-020-1937-6
1 |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
|
2 |
Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172
|
3 |
Ra’di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design and realizations. Physical Review Applied, 2015, 3(3): 037001
|
4 |
Hajian H, Ghobadi A, Butun B, Ozbay E. Active metamaterial nearly perfect light absorbers: a review. Journal of the Optical Society of America. B, Optical Physics, 2019, 36(8): F131–F143
|
5 |
Yang X, Sun Z, Low T, Hu H, Guo X D, García de Abajo F J, Avouris P, Dai Q. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896
|
6 |
Zhai Y, Chen G, Ji J, Ma X, Wu Z, Li Y, Wang Q. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Nanotechnology, 2019, 30(37): 375201
|
7 |
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
|
8 |
Yang M Q, Gao M, Hong M, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894
|
9 |
Rhee J Y, Yoo Y J, Kim K W, Kim Y J, Lee Y P. Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1541–1580
|
10 |
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108
|
11 |
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530
|
12 |
Baranwal A, Srivastava A, Kumar P, Bajpai V K, Maurya P K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 2018, 9: 422
|
13 |
Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2(1): 517
|
14 |
Ng C, Cadusch J J, Dligatch S, Roberts A, Davis T J, Mulvaney P, Gómez D E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10(4): 4704–4711
|
15 |
Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27(4): 5326–5336
|
16 |
Azad A K, Kort-Kamp W J M, Sykora M, Weisse-Bernstein N R, Luk T S, Taylor A J, Dalvit D A R, Chen H T. Metasurface broadband solar absorber. Scientific Reports, 2016, 6(1): 20347
|
17 |
Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang Z G, Zhang O Z, Ade H, Li Y. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chemistry of Materials, 2017, 29(23): 10130–10138
|
18 |
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
|
19 |
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
|
20 |
Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8(5): 823–832
|
21 |
Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y, Hitz E, Luo W, Lu M, Yang B, Hu L. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028
|
22 |
Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro-and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881
|
23 |
Buller S, Strunk J. Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25(2): 171–190
|
24 |
Zhang N, Han C, Fu X, Xu Y J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond. Chem, 2018, 4(8): 1832–1861
|
25 |
Wang S J, Su D, Zhang T. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401
|
26 |
Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon P C, Mandel H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Physics, 2003, 214(1): 1–22
|
27 |
Thuillier G, Hersé M, Simon P C, Labs D, Mandel H, Gillotay D, Petermans W. The absolute solar spectral irradiance from 200 to 2500nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 2000, 25(5-6): 375–377
|
28 |
Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, Tanemura S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7691–7709
|
29 |
Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Global Challenges, 2018, 2(2): 1700094
|
30 |
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
|
31 |
Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Advanced Energy Materials, 2017, 7(23): 1700473
|
32 |
Zhang T, Wang S J, Zhang X Y, Su D, Yang Y, Wu J Y, Xu Y Y, Zhao N. Progress in the utilization efficiency improvement of hot carriers in plasmon-mediated heterostructure photocatalysis. Applied Sciences (Basel, Switzerland), 2019, 9(10): 2093
|
33 |
Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 2017, 6(1): 177–191
|
34 |
Ji C, Lee K T, Xu T, Zhou J, Park H J, Guo L J. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials, 2017, 5(20): 1700368
|
35 |
Baranov D G, Xiao Y, Nechepurenko I A, Krasnok A, Alù A, Kats M A. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920–930
|
36 |
Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z. Broadband metamaterial absorbers. Advanced Optical Materials, 2019, 7(3): 1800995
|
37 |
Kim J U, Lee S, Kang S J, Kim T. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10(46): 21555–21574
|
38 |
Gao M, Zhu L, Peh C K, Ho J W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
|
39 |
Wang Y, Xu N, Li D, Zhu J. Thermal properties of two dimensional layered materials. Advanced Functional Materials, 2017, 27(19): 1604134
|
40 |
Long R, Li Y, Song L, Xiong Y. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32): 3873–3889
|
41 |
Cushing S K, Wu N. Progress and perspectives of plasmon-enhanced solar energy conversion. Journal of Physical Chemistry Letters, 2016, 7(4): 666–675
|
42 |
Sharma G, Thakur B, Naushad M, Kumar A, Stadler F J, Alfadul S M, Mola G T. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16(1): 113–146
|
43 |
Fan R H, Xiong B, Peng R W, Wang M. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 2019, DOI: http://doi.org/10.1002/adma.201904646
|
44 |
Ghobadi A, Hajian H, Butun B, Ozbay E. Strong interference in planar, multilayer perfect absorbers: achieving high-operational performances in visible and near-infrared regimes. IEEE Nanotechnology Magazine, 2019, 13(4): 1–16
|
45 |
Li Y, Jin X, Zheng Y, Li W, Zheng F, Wang W, Lin T, Zhu Z. Tunable water delivery in carbon-coated fabrics for high efficiency solar vapor generation. ACS Applied Materials & Interfaces, 2019, 11(50): 46938–46946
|
46 |
Liu Z, Song H, Ji D, Li C, Cheney A, Liu Y, Zhang N, Zeng X, Chen B, Gao J, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017, 1(2): 1600003
|
47 |
Li H, Wu L, Zhang H, Dai W, Hao J, Wu H, Ren F, Liu C. Self-assembly of carbon black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces, 2020, 12(3): 4081–4087
|
48 |
Yang Z P, Ci L, Bur J A, Lin S Y, Ajayan P M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008, 8(2): 446–451
|
49 |
Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981
|
50 |
Lamy-Mendes A, Silva R F, Durães L. Advances in carbon nanostructure-silica aerogel composites: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(4): 1340–1369
|
51 |
Yang F, Zhang Y, Yang X, Zhong M, Yi Z, Liu X, Kang X, Luo J, Li J, Wang C Y, et al
|
52 |
Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano, 2016, 10(10): 9123–9128
|
53 |
Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R. Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129: 598–606
|
54 |
Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, Liang W, Li A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Advanced Energy Materials, 2019, 9(1): 1802158
|
55 |
Anguita J V, Ahmad M, Haq S, Allam J P, Silva S R. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2(2): e1501238
|
56 |
Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16359–16368
|
57 |
Liu K K, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681
|
58 |
Liu F, Wang L, Bradley R, Zhao B, Wu W. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Advances, 2019, 9(50): 29414–29423
|
59 |
Liu F, Zhao B, Wu W, Yang H, Ning Y, Lai Y, Bradley R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266
|
60 |
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
|
61 |
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
|
62 |
Wang L L, Zhu G, Wei Y, Zeng J, Yu X, Li Q, Xie H. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Solar Energy Materials and Solar Cells, 2018, 184: 1–8
|
63 |
Liu F, Lai Y, Zhao B, Bradley R, Wu W. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653
|
64 |
Bao Q, Loh K P. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
|
65 |
Mo Z, Xu H, Chen Z, She X, Song Y, Wu J, Yan P, Xu L, Lei Y, Yuan S, Li H. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225: 154–161
|
66 |
Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227
|
67 |
Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Advances, 2017, 7(1): 8–19
|
68 |
Chan G H, Zhao J, Hicks E M, Schatz G C, Van Duyne R P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947–1952
|
69 |
Zhang X Y, Zhou H L, Shan F, Xue X M, Su D, Liu Y R, Chen Y Z, Wu J Y, Zhang T. Synthesis of silver nanoplate based two-dimension plasmonic platform from 25 nm to 40 mm: growth mechanism and optical characteristic investigation in situ. RSC Advances, 2017, 7(88): 55680–55690
|
70 |
Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414–6420
|
71 |
Zhou Y, Yu S H, Wang C Y, Li X G, Zhu Y R, Chen Z Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850–852
|
72 |
Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y, Duley W W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano, 2011, 5(11): 9082–9092
|
73 |
Brown A M, Sundararaman R, Narang P, Goddard W A III, Atwater H A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2016, 10(1): 957–966
|
74 |
Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S K, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011, 23(45): 5410–5414
|
75 |
Zhang H, Guan C, Luo J, Yuan Y, Song N, Zhang Y, Fang J, Liu H. Facile film-nanoctahedron assembly route to plasmonic metamaterial absorbers at visible frequencies. ACS Applied Materials & Interfaces, 2019, 11(22): 20241–20248
|
76 |
Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015, 7(8): 4962–4968
|
77 |
Meudt M, Jakob T, Polywka A, Stegers L, Kropp S, Runke S, Zang M, Clemens M, Görrn P. Plasmonic black metasurface by transfer printing. Advanced Materials Technologies, 2018, 3(11): 1800124
|
78 |
Berean K J, Sivan V, Khodasevych I, Boes A, Della Gaspera E, Field M R, Kalantar-Zadeh K, Mitchell A, Rosengarten G. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption. Advanced Optical Materials, 2016, 4(8): 1247–1254
|
79 |
Fan P, Wu H, Zhong M, Zhang H, Bai B, Jin G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale, 2016, 8(30): 14617–14624
|
80 |
Li Y, Li D, Zhou D, Chi C, Yang S, Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL, 2018, 2(8): 1800057
|
81 |
Yu W, Lu Y, Chen X, Xu H, Shao J, Chen X, Sun Y, Hao J, Dai N. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Advanced Optical Materials, 2019, 7(20): 1900841
|
82 |
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
|
83 |
Hedayati M K, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics. A, Materials Science & Processing, 2012, 109(4): 769–773
|
84 |
Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43(12): 2981–2984
|
85 |
Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
|
86 |
Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6(1): 30650
|
87 |
Mulla B, Sabah C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics, 2016, 11(5): 1313–1321
|
88 |
Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B, Levy U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2(4): 335–338
|
89 |
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
|
90 |
Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters, 2012, 12(3): 1443–1447
|
91 |
Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42(3): 450–453
|
92 |
Ho K H W, Shang A, Shi F, Lo T W, Yeung P H, Yu Y S, Zhang X, Wong K, Lei D Y. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction. Advanced Functional Materials, 2018, 28(34): 1800383
|
93 |
Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(5): 989–999
|
94 |
Shan F, Zhang X Y, Fu X C, Zhang L J, Su D, Wang S J, Wu J Y, Zhang T. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7(1): 6813
|
95 |
Zhang X Y, Zhang T, Zhu S Q, Wang L D, Liu X, Wang Q L, Song Y J. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Research Letters, 2012, 7(1): 596
|
96 |
Karampelas I H, Liu K, Alali F, Furlani E P. Plasmonic nanoframes for photothermal energy conversion. Journal of Physical Chemistry C, 2016, 120(13): 7256–7264
|
97 |
Gao M, Peh C K, Phan H T, Zhu L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 2018, 8(25): 1800711
|
98 |
Wang L D, Zhang T, Zhang X Y, Li R Z, Zhu S Q, Wang L N. Synthesis of ultra-thin gold nanosheets composed of steadily linked dense nanoparticle arrays using magnetron sputtering. Nanoscience and Nanotechnology Letters, 2013, 5(2): 257–260
|
99 |
Piragash R M K, Venkatesh A, Moorthy V H S. Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 2019, 14(2): 365–374
|
100 |
Li M, Guler U, Li Y, Rea A, Tanyi E K, Kim Y, Noginov M A, Song Y, Boltasseva A, Shalaev V M, Kotov N A. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Letters, 2018, 3(7): 1578–1583
|
101 |
Chang C C, Nogan J, Yang Z P, Kort-Kamp W J M, Ross W, Luk T S, Dalvit D A R, Azad A K, Chen H T. Highly plasmonic titanium nitride by room-temperature sputtering. Scientific Reports, 2019, 9(1): 15287
|
102 |
Nagarajan A, Vivek K, Shah M, Achanta V G, Gerini G. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 2018, 6(16): 1800253
|
103 |
Kharitonov A, Kharintsev S. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON. Optical Materials Express, 2020, 10(2): 513–531
|
104 |
Bhattacharjee A, Ahmaruzzaman M. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 2016, 6(47): 41348–41363
|
105 |
Yin X, Zhang Y, Guo Q, Cai X, Xiao J, Ding Z, Yang J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Applied Materials & Interfaces, 2018, 10(13): 10998–11007
|
106 |
Devlin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478
|
107 |
Wang S, Chen F, Ji R, Hou M, Yi F, Zheng W, Zhang T, Lu W. Large-area low-cost dielectric perfect absorber by one-step sputtering. Advanced Optical Materials, 2019, 7(9): 1801596
|
108 |
Han S, Shin J H, Jung P H, Lee H, Lee B J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Advanced Optical Materials, 2016, 4(8): 1265–1273
|
109 |
Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 2013, 25(17): 2385–2396
|
110 |
Song G, Yuan Y, Liu J, Liu Q, Zhang W, Fang J, Gu J, Ma D, Zhang D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Advanced Sustainable Systems, 2019, 3(6): 1900003
|
111 |
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
|
112 |
Wang K, Xing Z, Du M, Zhang S, Li Z, Pan K, Zhou W. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal-photocatalytic performance. Catalysis Science & Technology, 2019, 9(23): 6714–6722
|
113 |
Dong W, Qiu Y, Yang J, Simpson R E, Cao T. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. Journal of Physical Chemistry C, 2016, 120(23): 12713–12722
|
114 |
Wang M, Zhang J, Wang P, Li C, Xu X, Jin Y. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11(7): 3854–3863
|
115 |
Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
|
116 |
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
|
117 |
Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693
|
118 |
Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066
|
119 |
Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H, Poulikakos D. Metasurfaces leveraging solar energy for icephobicity. ACS Nano, 2018, 12(7): 7009–7017
|
120 |
Huang J, Liu C, Zhu Y, Masala S, Alarousu E, Han Y, Fratalocchi A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11(1): 60121
|
121 |
Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T J, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126
|
122 |
Li J, Du M, Lv G, Zhou L, Li X, Bertoluzzi L, Liu C, Zhu S, Zhu J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159
|
123 |
Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031
|
124 |
Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41: 201–209
|
125 |
Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762
|
126 |
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
|
127 |
Wang X, He Y, Liu X, Cheng G, Zhu J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 2017, 195: 414–425
|
128 |
Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947
|
129 |
Dongare P D, Alabastri A, Neumann O, Nordlander P, Halas N J. Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13182–13187
|
130 |
Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149: 401–408
|
131 |
Wang X, Ou G, Wang N, Wu H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Applied Materials & Interfaces, 2016, 8(14): 9194–9199
|
132 |
Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43(1): 473–486
|
133 |
Aslam U, Rao V G, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 2018, 1(9): 656–665
|
134 |
Zheng Z, Xie W, Huang B, Dai Y. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333
|
135 |
Ghobadi T G U, Ghobadi A, Ozbay E, Karadas F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem, 2018, 2(3): 161–182
|
136 |
Xiao Q, Connell T U, Cadusch J J, Roberts A, Chesman A S R, Gómez D E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catalysis, 2018, 8(11): 10331–10339
|
137 |
Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro L V, Govorov A O, Kildishev A V, Boltasseva A, Shalaev V M. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 2017, 5(15): 1601031
|
138 |
Li X, Shang J, Wang Z. Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37(2): 170–185
|
139 |
Kreder M J, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews. Materials, 2016, 1(1): 1–15
|
140 |
Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation. Science Advances, 2018, 4(8): eaat0127
|
141 |
Yang Z, Han X, Lee H K, Phan-Quang G C, Koh C S L, Lay C L, Lee Y H, Miao Y E, Liu T, Phang I Y, Ling X Y. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10(34): 16005–16012
|
142 |
Barho F B, Gonzalez-Posada F, Bomers M, Mezy A, Cerutti L, Taliercio T. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics, 2019, 6(6): 1506–1514
|
143 |
Chandrashekara M. Experimental analysis of high temperature solar selective coated box type receiver for desalination. International Journal of Ambient Energy, 2020, DOI: 10.1080/01430750.2020.1718752
|
144 |
Li Y, Choi S S, Yang C. Dish-Stirling solar power plants: Modeling, analysis, and control of receiver temperature. IEEE Transactions on Sustainable Energy, 2014, 5(2): 398–407
|
/
〈 |
|
〉 |