Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization
Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su
Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization
Nanostructure-based broadband absorbers are prominently attractive in various research fields such as nanomaterials, nanofabrication, nanophotonics and energy utilization. A highly efficient light absorption in wider wavelength ranges makes such absorbers useful in many solar energy harvesting applications. In this review, we present recent advances of broadband absorbers which absorb light by nanostructures. We start from the mechanism and design strategies of broadband absorbers based on different materials such as carbon-based, plasmonic or dielectric materials and then reviewed recent progress of solar energy thermal utilization dependent on the superior photo-heat conversion capacity of broadband absorbers which may significantly influence the future development of solar energy utilization, seawater purification and photoelectronic device design.
nanostructured broadband absorbers / solar energy harvesting / thermal utilization
[1] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
CrossRef
Google scholar
|
[2] |
Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172
CrossRef
Google scholar
|
[3] |
Ra’di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design and realizations. Physical Review Applied, 2015, 3(3): 037001
CrossRef
Google scholar
|
[4] |
Hajian H, Ghobadi A, Butun B, Ozbay E. Active metamaterial nearly perfect light absorbers: a review. Journal of the Optical Society of America. B, Optical Physics, 2019, 36(8): F131–F143
CrossRef
Google scholar
|
[5] |
Yang X, Sun Z, Low T, Hu H, Guo X D, García de Abajo F J, Avouris P, Dai Q. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 2018, 30(20): 1704896
CrossRef
Google scholar
|
[6] |
Zhai Y, Chen G, Ji J, Ma X, Wu Z, Li Y, Wang Q. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection. Nanotechnology, 2019, 30(37): 375201
CrossRef
Google scholar
|
[7] |
Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
CrossRef
Google scholar
|
[8] |
Yang M Q, Gao M, Hong M, Ho G W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894
CrossRef
Google scholar
|
[9] |
Rhee J Y, Yoo Y J, Kim K W, Kim Y J, Lee Y P. Metamaterial-based perfect absorbers. Journal of Electromagnetic Waves and Applications, 2014, 28(13): 1541–1580
CrossRef
Google scholar
|
[10] |
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108
CrossRef
Google scholar
|
[11] |
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530
CrossRef
Google scholar
|
[12] |
Baranwal A, Srivastava A, Kumar P, Bajpai V K, Maurya P K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 2018, 9: 422
CrossRef
Google scholar
|
[13] |
Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011, 2(1): 517
CrossRef
Google scholar
|
[14] |
Ng C, Cadusch J J, Dligatch S, Roberts A, Davis T J, Mulvaney P, Gómez D E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 2016, 10(4): 4704–4711
CrossRef
Google scholar
|
[15] |
Lu G, Wu F, Zheng M, Chen C, Zhou X, Diao C, Liu F, Du G, Xue C, Jiang H, Chen H. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27(4): 5326–5336
CrossRef
Google scholar
|
[16] |
Azad A K, Kort-Kamp W J M, Sykora M, Weisse-Bernstein N R, Luk T S, Taylor A J, Dalvit D A R, Chen H T. Metasurface broadband solar absorber. Scientific Reports, 2016, 6(1): 20347
CrossRef
Google scholar
|
[17] |
Li X, Huang H, Bin H, Peng Z, Zhu C, Xue L, Zhang Z G, Zhang O Z, Ade H, Li Y. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chemistry of Materials, 2017, 29(23): 10130–10138
CrossRef
Google scholar
|
[18] |
Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
CrossRef
Google scholar
|
[19] |
Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
CrossRef
Google scholar
|
[20] |
Ghobadi A, Hajian H, Gokbayrak M, Butun B, Ozbay E. Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics, 2019, 8(5): 823–832
CrossRef
Google scholar
|
[21] |
Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y, Hitz E, Luo W, Lu M, Yang B, Hu L. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028
CrossRef
Google scholar
|
[22] |
Khodasevych I E, Wang L, Mitchell A, Rosengarten G. Micro-and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881
CrossRef
Google scholar
|
[23] |
Buller S, Strunk J. Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25(2): 171–190
CrossRef
Google scholar
|
[24] |
Zhang N, Han C, Fu X, Xu Y J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond. Chem, 2018, 4(8): 1832–1861
CrossRef
Google scholar
|
[25] |
Wang S J, Su D, Zhang T. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401
|
[26] |
Thuillier G, Hersé M, Labs D, Foujols T, Peetermans W, Gillotay D, Simon P C, Mandel H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Physics, 2003, 214(1): 1–22
CrossRef
Google scholar
|
[27] |
Thuillier G, Hersé M, Simon P C, Labs D, Mandel H, Gillotay D, Petermans W. The absolute solar spectral irradiance from 200 to 2500nm as measured by the SOLSPEC spectrometer with the ATLAS and EURECA missions. Physics and Chemistry of the Earth. Part C: Solar-terrestrial and Planetary Science, 2000, 25(5-6): 375–377
CrossRef
Google scholar
|
[28] |
Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, Tanemura S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7691–7709
CrossRef
Google scholar
|
[29] |
Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Global Challenges, 2018, 2(2): 1700094
CrossRef
Google scholar
|
[30] |
Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
CrossRef
Google scholar
|
[31] |
Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Advanced Energy Materials, 2017, 7(23): 1700473
CrossRef
Google scholar
|
[32] |
Zhang T, Wang S J, Zhang X Y, Su D, Yang Y, Wu J Y, Xu Y Y, Zhao N. Progress in the utilization efficiency improvement of hot carriers in plasmon-mediated heterostructure photocatalysis. Applied Sciences (Basel, Switzerland), 2019, 9(10): 2093
CrossRef
Google scholar
|
[33] |
Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics, 2017, 6(1): 177–191
CrossRef
Google scholar
|
[34] |
Ji C, Lee K T, Xu T, Zhou J, Park H J, Guo L J. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials, 2017, 5(20): 1700368
CrossRef
Google scholar
|
[35] |
Baranov D G, Xiao Y, Nechepurenko I A, Krasnok A, Alù A, Kats M A. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920–930
CrossRef
Google scholar
|
[36] |
Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O, Wang Z. Broadband metamaterial absorbers. Advanced Optical Materials, 2019, 7(3): 1800995
CrossRef
Google scholar
|
[37] |
Kim J U, Lee S, Kang S J, Kim T. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 2018, 10(46): 21555–21574
CrossRef
Google scholar
|
[38] |
Gao M, Zhu L, Peh C K, Ho J W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
CrossRef
Google scholar
|
[39] |
Wang Y, Xu N, Li D, Zhu J. Thermal properties of two dimensional layered materials. Advanced Functional Materials, 2017, 27(19): 1604134
CrossRef
Google scholar
|
[40] |
Long R, Li Y, Song L, Xiong Y. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small, 2015, 11(32): 3873–3889
CrossRef
Google scholar
|
[41] |
Cushing S K, Wu N. Progress and perspectives of plasmon-enhanced solar energy conversion. Journal of Physical Chemistry Letters, 2016, 7(4): 666–675
CrossRef
Google scholar
|
[42] |
Sharma G, Thakur B, Naushad M, Kumar A, Stadler F J, Alfadul S M, Mola G T. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16(1): 113–146
CrossRef
Google scholar
|
[43] |
Fan R H, Xiong B, Peng R W, Wang M. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 2019, DOI: http://doi.org/10.1002/adma.201904646
|
[44] |
Ghobadi A, Hajian H, Butun B, Ozbay E. Strong interference in planar, multilayer perfect absorbers: achieving high-operational performances in visible and near-infrared regimes. IEEE Nanotechnology Magazine, 2019, 13(4): 1–16
CrossRef
Google scholar
|
[45] |
Li Y, Jin X, Zheng Y, Li W, Zheng F, Wang W, Lin T, Zhu Z. Tunable water delivery in carbon-coated fabrics for high efficiency solar vapor generation. ACS Applied Materials & Interfaces, 2019, 11(50): 46938–46946
CrossRef
Google scholar
|
[46] |
Liu Z, Song H, Ji D, Li C, Cheney A, Liu Y, Zhang N, Zeng X, Chen B, Gao J, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017, 1(2): 1600003
CrossRef
Google scholar
|
[47] |
Li H, Wu L, Zhang H, Dai W, Hao J, Wu H, Ren F, Liu C. Self-assembly of carbon black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces, 2020, 12(3): 4081–4087
CrossRef
Google scholar
|
[48] |
Yang Z P, Ci L, Bur J A, Lin S Y, Ajayan P M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008, 8(2): 446–451
CrossRef
Google scholar
|
[49] |
Li Y, Gao T, Yang Z, Chen C, Luo W, Song J, Hitz E, Jia C, Zhou Y, Liu B, Yang B, Hu L. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981
CrossRef
Google scholar
|
[50] |
Lamy-Mendes A, Silva R F, Durães L. Advances in carbon nanostructure-silica aerogel composites: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(4): 1340–1369
CrossRef
Google scholar
|
[51] |
Yang F, Zhang Y, Yang X, Zhong M, Yi Z, Liu X, Kang X, Luo J, Li J, Wang C Y, et al
CrossRef
Google scholar
|
[52] |
Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano, 2016, 10(10): 9123–9128
CrossRef
Google scholar
|
[53] |
Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R. Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon, 2018, 129: 598–606
CrossRef
Google scholar
|
[54] |
Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, Liang W, Li A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Advanced Energy Materials, 2019, 9(1): 1802158
CrossRef
Google scholar
|
[55] |
Anguita J V, Ahmad M, Haq S, Allam J P, Silva S R. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2(2): e1501238
CrossRef
Google scholar
|
[56] |
Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16359–16368
CrossRef
Google scholar
|
[57] |
Liu K K, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681
CrossRef
Google scholar
|
[58] |
Liu F, Wang L, Bradley R, Zhao B, Wu W. Highly efficient solar seawater desalination with environmentally friendly hierarchical porous carbons derived from halogen-containing polymers. RSC Advances, 2019, 9(50): 29414–29423
CrossRef
Google scholar
|
[59] |
Liu F, Zhao B, Wu W, Yang H, Ning Y, Lai Y, Bradley R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266
CrossRef
Google scholar
|
[60] |
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
CrossRef
Google scholar
|
[61] |
Guo J, Li D, Zhao H, Zou W, Yang Z, Qian Z, Yang S, Yang M, Zhao N, Xu J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Applied Materials & Interfaces, 2019, 11(17): 15945–15951
CrossRef
Google scholar
|
[62] |
Wang L L, Zhu G, Wei Y, Zeng J, Yu X, Li Q, Xie H. Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Solar Energy Materials and Solar Cells, 2018, 184: 1–8
CrossRef
Google scholar
|
[63] |
Liu F, Lai Y, Zhao B, Bradley R, Wu W. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653
CrossRef
Google scholar
|
[64] |
Bao Q, Loh K P. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
CrossRef
Google scholar
|
[65] |
Mo Z, Xu H, Chen Z, She X, Song Y, Wu J, Yan P, Xu L, Lei Y, Yuan S, Li H. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225: 154–161
CrossRef
Google scholar
|
[66] |
Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227
CrossRef
Google scholar
|
[67] |
Zhang X Y, Xu J J, Wu J Y, Shan F, Ma X D, Chen Y Z, Zhang T. Seeds triggered massive synthesis and multi-step room temperature post-processing of silver nanoink-application for paper electronics. RSC Advances, 2017, 7(1): 8–19
CrossRef
Google scholar
|
[68] |
Chan G H, Zhao J, Hicks E M, Schatz G C, Van Duyne R P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 2007, 7(7): 1947–1952
CrossRef
Google scholar
|
[69] |
Zhang X Y, Zhou H L, Shan F, Xue X M, Su D, Liu Y R, Chen Y Z, Wu J Y, Zhang T. Synthesis of silver nanoplate based two-dimension plasmonic platform from 25 nm to 40 mm: growth mechanism and optical characteristic investigation in situ. RSC Advances, 2017, 7(88): 55680–55690
CrossRef
Google scholar
|
[70] |
Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414–6420
CrossRef
Google scholar
|
[71] |
Zhou Y, Yu S H, Wang C Y, Li X G, Zhu Y R, Chen Z Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 1999, 11(10): 850–852
CrossRef
Google scholar
|
[72] |
Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y, Duley W W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano, 2011, 5(11): 9082–9092
CrossRef
Google scholar
|
[73] |
Brown A M, Sundararaman R, Narang P, Goddard W A III, Atwater H A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2016, 10(1): 957–966
CrossRef
Google scholar
|
[74] |
Hedayati M K, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula V S K, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 2011, 23(45): 5410–5414
CrossRef
Google scholar
|
[75] |
Zhang H, Guan C, Luo J, Yuan Y, Song N, Zhang Y, Fang J, Liu H. Facile film-nanoctahedron assembly route to plasmonic metamaterial absorbers at visible frequencies. ACS Applied Materials & Interfaces, 2019, 11(22): 20241–20248
CrossRef
Google scholar
|
[76] |
Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Applied Materials & Interfaces, 2015, 7(8): 4962–4968
CrossRef
Google scholar
|
[77] |
Meudt M, Jakob T, Polywka A, Stegers L, Kropp S, Runke S, Zang M, Clemens M, Görrn P. Plasmonic black metasurface by transfer printing. Advanced Materials Technologies, 2018, 3(11): 1800124
CrossRef
Google scholar
|
[78] |
Berean K J, Sivan V, Khodasevych I, Boes A, Della Gaspera E, Field M R, Kalantar-Zadeh K, Mitchell A, Rosengarten G. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption. Advanced Optical Materials, 2016, 4(8): 1247–1254
CrossRef
Google scholar
|
[79] |
Fan P, Wu H, Zhong M, Zhang H, Bai B, Jin G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale, 2016, 8(30): 14617–14624
CrossRef
Google scholar
|
[80] |
Li Y, Li D, Zhou D, Chi C, Yang S, Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL, 2018, 2(8): 1800057
CrossRef
Google scholar
|
[81] |
Yu W, Lu Y, Chen X, Xu H, Shao J, Chen X, Sun Y, Hao J, Dai N. Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window. Advanced Optical Materials, 2019, 7(20): 1900841
CrossRef
Google scholar
|
[82] |
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
CrossRef
Google scholar
|
[83] |
Hedayati M K, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics. A, Materials Science & Processing, 2012, 109(4): 769–773
CrossRef
Google scholar
|
[84] |
Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Optics Letters, 2018, 43(12): 2981–2984
CrossRef
Google scholar
|
[85] |
Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
CrossRef
Google scholar
|
[86] |
Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi S I. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Scientific Reports, 2016, 6(1): 30650
CrossRef
Google scholar
|
[87] |
Mulla B, Sabah C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics, 2016, 11(5): 1313–1321
CrossRef
Google scholar
|
[88] |
Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin J B, Levy U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2015, 2(4): 335–338
CrossRef
Google scholar
|
[89] |
Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
CrossRef
Google scholar
|
[90] |
Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters, 2012, 12(3): 1443–1447
CrossRef
Google scholar
|
[91] |
Wu D, Liu C, Liu Y, Yu L, Yu Z, Chen L, Ma R, Ye H. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Optics Letters, 2017, 42(3): 450–453
CrossRef
Google scholar
|
[92] |
Ho K H W, Shang A, Shi F, Lo T W, Yeung P H, Yu Y S, Zhang X, Wong K, Lei D Y. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction. Advanced Functional Materials, 2018, 28(34): 1800383
CrossRef
Google scholar
|
[93] |
Zhang X Y, Shan F, Zhou H L, Su D, Xue X M, Wu J Y, Chen Y Z, Zhao N, Zhang T. Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(5): 989–999
CrossRef
Google scholar
|
[94] |
Shan F, Zhang X Y, Fu X C, Zhang L J, Su D, Wang S J, Wu J Y, Zhang T. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7(1): 6813
CrossRef
Google scholar
|
[95] |
Zhang X Y, Zhang T, Zhu S Q, Wang L D, Liu X, Wang Q L, Song Y J. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Research Letters, 2012, 7(1): 596
CrossRef
Google scholar
|
[96] |
Karampelas I H, Liu K, Alali F, Furlani E P. Plasmonic nanoframes for photothermal energy conversion. Journal of Physical Chemistry C, 2016, 120(13): 7256–7264
CrossRef
Google scholar
|
[97] |
Gao M, Peh C K, Phan H T, Zhu L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 2018, 8(25): 1800711
CrossRef
Google scholar
|
[98] |
Wang L D, Zhang T, Zhang X Y, Li R Z, Zhu S Q, Wang L N. Synthesis of ultra-thin gold nanosheets composed of steadily linked dense nanoparticle arrays using magnetron sputtering. Nanoscience and Nanotechnology Letters, 2013, 5(2): 257–260
CrossRef
Google scholar
|
[99] |
Piragash R M K, Venkatesh A, Moorthy V H S. Wet-chemical etching: a novel nanofabrication route to prepare broadband random plasmonic metasurfaces. Plasmonics, 2019, 14(2): 365–374
CrossRef
Google scholar
|
[100] |
Li M, Guler U, Li Y, Rea A, Tanyi E K, Kim Y, Noginov M A, Song Y, Boltasseva A, Shalaev V M, Kotov N A. Plasmonic biomimetic nanocomposite with spontaneous subwavelength structuring as broadband absorbers. ACS Energy Letters, 2018, 3(7): 1578–1583
CrossRef
Google scholar
|
[101] |
Chang C C, Nogan J, Yang Z P, Kort-Kamp W J M, Ross W, Luk T S, Dalvit D A R, Azad A K, Chen H T. Highly plasmonic titanium nitride by room-temperature sputtering. Scientific Reports, 2019, 9(1): 15287
CrossRef
Google scholar
|
[102] |
Nagarajan A, Vivek K, Shah M, Achanta V G, Gerini G. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration. Advanced Optical Materials, 2018, 6(16): 1800253
CrossRef
Google scholar
|
[103] |
Kharitonov A, Kharintsev S. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON. Optical Materials Express, 2020, 10(2): 513–531
CrossRef
Google scholar
|
[104] |
Bhattacharjee A, Ahmaruzzaman M. CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 2016, 6(47): 41348–41363
CrossRef
Google scholar
|
[105] |
Yin X, Zhang Y, Guo Q, Cai X, Xiao J, Ding Z, Yang J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Applied Materials & Interfaces, 2018, 10(13): 10998–11007
CrossRef
Google scholar
|
[106] |
Devlin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473–10478
CrossRef
Google scholar
|
[107] |
Wang S, Chen F, Ji R, Hou M, Yi F, Zheng W, Zhang T, Lu W. Large-area low-cost dielectric perfect absorber by one-step sputtering. Advanced Optical Materials, 2019, 7(9): 1801596
CrossRef
Google scholar
|
[108] |
Han S, Shin J H, Jung P H, Lee H, Lee B J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Advanced Optical Materials, 2016, 4(8): 1265–1273
CrossRef
Google scholar
|
[109] |
Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 2013, 25(17): 2385–2396
CrossRef
Google scholar
|
[110] |
Song G, Yuan Y, Liu J, Liu Q, Zhang W, Fang J, Gu J, Ma D, Zhang D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Advanced Sustainable Systems, 2019, 3(6): 1900003
CrossRef
Google scholar
|
[111] |
Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
CrossRef
Google scholar
|
[112] |
Wang K, Xing Z, Du M, Zhang S, Li Z, Pan K, Zhou W. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal-photocatalytic performance. Catalysis Science & Technology, 2019, 9(23): 6714–6722
CrossRef
Google scholar
|
[113] |
Dong W, Qiu Y, Yang J, Simpson R E, Cao T. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. Journal of Physical Chemistry C, 2016, 120(23): 12713–12722
CrossRef
Google scholar
|
[114] |
Wang M, Zhang J, Wang P, Li C, Xu X, Jin Y. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation. Nano Research, 2018, 11(7): 3854–3863
CrossRef
Google scholar
|
[115] |
Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
CrossRef
Google scholar
|
[116] |
Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
CrossRef
Google scholar
|
[117] |
Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Applied Energy Materials, 2018, 1(12): 6657–6693
CrossRef
Google scholar
|
[118] |
Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066
CrossRef
Google scholar
|
[119] |
Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H, Poulikakos D. Metasurfaces leveraging solar energy for icephobicity. ACS Nano, 2018, 12(7): 7009–7017
CrossRef
Google scholar
|
[120] |
Huang J, Liu C, Zhu Y, Masala S, Alarousu E, Han Y, Fratalocchi A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11(1): 60121
CrossRef
Google scholar
|
[121] |
Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T J, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126
CrossRef
Google scholar
|
[122] |
Li J, Du M, Lv G, Zhou L, Li X, Bertoluzzi L, Liu C, Zhu S, Zhu J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159
CrossRef
Google scholar
|
[123] |
Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031
CrossRef
Google scholar
|
[124] |
Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41: 201–209
CrossRef
Google scholar
|
[125] |
Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762
CrossRef
Google scholar
|
[126] |
Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
CrossRef
Google scholar
|
[127] |
Wang X, He Y, Liu X, Cheng G, Zhu J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy, 2017, 195: 414–425
CrossRef
Google scholar
|
[128] |
Li Y, Lin C, Zhou D, An Y, Li D, Chi C, Huang H, Yang S, Tso C Y, Chao C Y H, Huang B. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947
CrossRef
Google scholar
|
[129] |
Dongare P D, Alabastri A, Neumann O, Nordlander P, Halas N J. Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(27): 13182–13187
CrossRef
Google scholar
|
[130] |
Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management, 2017, 149: 401–408
CrossRef
Google scholar
|
[131] |
Wang X, Ou G, Wang N, Wu H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Applied Materials & Interfaces, 2016, 8(14): 9194–9199
CrossRef
Google scholar
|
[132] |
Lang X, Chen X, Zhao J. Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43(1): 473–486
CrossRef
Google scholar
|
[133] |
Aslam U, Rao V G, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalysis, 2018, 1(9): 656–665
CrossRef
Google scholar
|
[134] |
Zheng Z, Xie W, Huang B, Dai Y. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18322–18333
CrossRef
Google scholar
|
[135] |
Ghobadi T G U, Ghobadi A, Ozbay E, Karadas F. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. ChemPhotoChem, 2018, 2(3): 161–182
CrossRef
Google scholar
|
[136] |
Xiao Q, Connell T U, Cadusch J J, Roberts A, Chesman A S R, Gómez D E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catalysis, 2018, 8(11): 10331–10339
CrossRef
Google scholar
|
[137] |
Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro L V, Govorov A O, Kildishev A V, Boltasseva A, Shalaev V M. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 2017, 5(15): 1601031
CrossRef
Google scholar
|
[138] |
Li X, Shang J, Wang Z. Intelligent materials: a review of applications in 4D printing. Assembly Automation, 2017, 37(2): 170–185
CrossRef
Google scholar
|
[139] |
Kreder M J, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? Nature Reviews. Materials, 2016, 1(1): 1–15
CrossRef
Google scholar
|
[140] |
Dash S, de Ruiter J, Varanasi K K. Photothermal trap utilizing solar illumination for ice mitigation. Science Advances, 2018, 4(8): eaat0127
|
[141] |
Yang Z, Han X, Lee H K, Phan-Quang G C, Koh C S L, Lay C L, Lee Y H, Miao Y E, Liu T, Phang I Y, Ling X Y. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10(34): 16005–16012
CrossRef
Google scholar
|
[142] |
Barho F B, Gonzalez-Posada F, Bomers M, Mezy A, Cerutti L, Taliercio T. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics, 2019, 6(6): 1506–1514
CrossRef
Google scholar
|
[143] |
Chandrashekara M. Experimental analysis of high temperature solar selective coated box type receiver for desalination. International Journal of Ambient Energy, 2020, DOI: 10.1080/01430750.2020.1718752
|
[144] |
Li Y, Choi S S, Yang C. Dish-Stirling solar power plants: Modeling, analysis, and control of receiver temperature. IEEE Transactions on Sustainable Energy, 2014, 5(2): 398–407
CrossRef
Google scholar
|
/
〈 | 〉 |