Frontiers of Chemical Science and Engineering >
Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling
Received date: 28 Apr 2019
Accepted date: 08 Aug 2019
Published date: 15 Apr 2020
Copyright
Cu3(BTC)2, a common type of metal organic framework (MOF), was synthesized through electrochemical route for CO2 capture and its separation from N2. Taguchi method was employed for optimization of key parameters affecting the synthesis of Cu3(BTC)2. The results indicated that the optimum synthesis conditions with the highest CO2 selectivity can be obtained using 1 g of ligand, applied voltage of 25 V, synthesis time of 2 h, and electrode length of 3 cm. The single gas sorption capacity of the synthetized microstructure Cu3(BTC)2 for CO2 (at 298 K and 1 bar) was a considerable value of 4.40 mmol·g−1. The isosteric heat of adsorption of both gases was calculated by inserting temperature-dependent form of Langmuir isotherm model in the Clausius-Clapeyron equation. The adsorption of CO2/N2 binary mixture with a concentration ratio of 15/85 vol-% was also studied experimentally and the result was in a good agreement with the predicted value of IAST method. Moreover, Cu3(BTC)2 showed no considerable loss in CO2 adsorption after six sequential cycles. In addition, artificial neural networks (ANNs) were also applied to predict the separation behavior of CO2/N2 mixture by MOFs and the results revealed that ANNs could serve as an appropriate tool to predict the adsorptive selectivity of the binary gas mixture in the absence of experimental data.
Kasra Pirzadeh , Ali Asghar Ghoreyshi , Mostafa Rahimnejad , Maedeh Mohammadi . Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 233 -247 . DOI: 10.1007/s11705-019-1893-1
1 |
Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A. Climate Change 2001: The Scientific Basis. New York: The Press Syndicate of the University of Cambridge, 2001, 417–471
|
2 |
Monastersky R. Global carbon dioxide levels near worrisome milestone. Nature, 2013, 497(7447): 13–14
|
3 |
Wu X, Liu M, Shi R, Yu X, Liu Y. CO2 adsorption/regeneration kinetics and regeneration properties of amine functionalized SBA-16. Journal of Porous Materials, 2018, 25(4): 1219–1227
|
4 |
Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265
|
5 |
Aaron D, Tsouris C. Separation of CO2 from flue gas: A review. Separation Science and Technology, 2005, 40(1-3): 321–348
|
6 |
Belmabkhout Y, Guillerm V, Eddaoudi M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chemical Engineering Journal, 2016, 296: 386–397
|
7 |
Lee S Y, Park S J. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23: 1–11
|
8 |
Andirova D, Cogswell C F, Lei Y, Choi S. Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous and Mesoporous Materials, 2016, 219: 276–305
|
9 |
Witoon T, Chareonpanich M. Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Materials Letters, 2012, 81: 181–184
|
10 |
Li Q, Yang J, Feng D, Wu Z, Wu Q, Park S S, Ha C S, Zhao D. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3(9): 632–642
|
11 |
Witoon T. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics, 2012, 137(1): 235–245
|
12 |
Liu Y, Wang Z U, Zhou H C. Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases. Science and Technology, 2012, 2(4): 239–259
|
13 |
Liu J, Tian J, Thallapally P K, McGrail B P. Selective CO2 capture from flue gas using metal-organic frameworks—a fixed bed study. Journal of Physical Chemistry C, 2012, 116(17): 9575–9581
|
14 |
Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012, 12(7): 3489–3498
|
15 |
Wu H, Simmons J M, Liu Y, Brown C M, Wang X S, Ma S, Peterson V K, Southon P D, Kepert C J, Zhou H C, Yildirim T, Zhou W. Metal-organic frameworks with exceptionally high methane uptake: Where and how is methane stored? Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(17): 5205–5214
|
16 |
Xiang S, Zhou W, Gallegos J M, Liu Y, Chen B. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. Journal of the American Chemical Society, 2009, 131(34): 12415–12419
|
17 |
Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
|
18 |
Dietzel P D, Johnsen R E, Blom R, Fjellvåg H. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(8): 2389–2397
|
19 |
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
|
20 |
Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley P, Morris R, Zecchina A. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007, 9(21): 2676–2685
|
21 |
Van Assche T R, Campagnol N, Muselle T, Terryn H, Fransaer J, Denayer J F. On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 224: 302–310
|
22 |
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 2006, 16(7): 626–636
|
23 |
Yang H, Du H, Zhang L, Liang Z, Li W. Electrosynthesis and electrochemical mechanism of Zn-based Metal-organic Frameworks. International Journal of Electrochemical Science, 2015, 10: 1420–1433
|
24 |
Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Microporous and Mesoporous Materials, 2013, 168: 57–64
|
25 |
Kumar R S, Kumar S S, Kulandainathan M A. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochemistry Communications, 2012, 25: 70–73
|
26 |
Kundu A, Gupta B S, Hashim M, Redzwan G. Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 2015, 105: 420–427
|
27 |
Syed-Hassan S S A, Zaini M S M. Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design. Korean Journal of Chemical Engineering, 2016, 33(8): 2502–2512
|
28 |
Pirzadeh K, Ghoreyshi A A, Rahimnejad M, Mohammadi M. Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean Journal of Chemical Engineering, 2018, 35(4): 974–983
|
29 |
Yen H Y, Lin C P. Adsorption of Cd (II) from wastewater using spent coffee grounds by Taguchi optimization. Desalination and Water Treatment, 2016, 57(24): 11154–11161
|
30 |
Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A. Taguchi optimization approach for Pb (II) and Hg (II) removal from aqueous solutions using modified mesoporous carbon. Journal of Hazardous Materials, 2011, 192(3): 1046–1055
|
31 |
Roy R K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. New York: John Wiley & Sons, 2001, 1–531
|
32 |
Engin A B, Özdemir Ö, Turan M, Turan A Z. Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method. Journal of Hazardous Materials, 2008, 159(2): 348–353
|
33 |
Sadrzadeh M, Mohammadi T. Sea water desalination using electrodialysis. Desalination, 2008, 221(1-3): 440–447
|
34 |
Esfandiari K, Mahdavi A R, Ghoreyshi A A, Jahanshahi M. Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@CuBTC composite for enhanced hydrogen uptake. International Journal of Hydrogen Energy, 2018, 43(13): 6654–6665
|
35 |
Phadke M S. Quality Engineering Using Robust Design. 1st ed. New Jersy: Prentice Hall PTR, 1995, 1–250
|
36 |
Myers A, Prausnitz J M. Thermodynamics of mixed-gas adsorption. AIChE Journal. American Institute of Chemical Engineers, 1965, 11(1): 121–127
|
37 |
Daliakopoulos I N, Coulibaly P, Tsanis I K. Groundwater level forecasting using artificial neural networks. Journal of Hydrology (Amsterdam), 2005, 309(1-4): 229–240
|
38 |
Gardner M W, Dorling S. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 1998, 32(14-15): 2627–2636
|
39 |
Refaeilzadeh P, Tang L, Liu H. Cross-validation. In: Liu L, Özsu M T, eds. Encyclopedia of Database Systems. Boston: Springer, 2009, 532–538
|
40 |
Esfandiari K, Ghoreyshi A A, Jahanshahi M. Using artificial neural network and ideal adsorbed solution theory for predicting the CO2/CH4 selectivities of metal-organic frameworks: A comparative study. Industrial & Engineering Chemistry Research, 2017, 56(49): 14610–14622
|
41 |
Lapedes A S, Farber R M. How neural nets work. In: Anderson D Z, ed. Neural Information Processing Systems. New York: AIP Press, 1988, 442–456
|
42 |
Panchal G, Ganatra A, Kosta Y, Panchal D. Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 2011, 3(2): 332–337
|
43 |
Lin R G, Lin R B, Chen B. A microporous metal-organic framework for selective C2H2 and CO2 separation. Journal of Solid State Chemistry, 2017, 252: 138–141
|
44 |
Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 2012, 94: 124–130
|
45 |
Mishra P, Edubilli S, Mandal B, Gumma S. Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and Mesoporous Materials, 2013, 169: 75–80
|
46 |
Wu Z, Wei S, Wang M, Zhou S, Wang J, Wang Z, Guo W, Lu X.CO2 capture and separation over N2 and CH4 in nanoporous MFM-300 (In, Al, Ga, and In-3N): insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28: 145–151
|
47 |
McDonald T M, D’Alessandro D M, Krishna R, Long J R. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chemical Science (Cambridge), 2011, 2(10): 2022–2028
|
48 |
Zhang Z, Xian S, Xia Q, Wang H, Li Z, Li J. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(6): 2195–2206
|
49 |
Mason J A, Sumida K, Herm Z R, Krishna R, Long J R. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science, 2011, 4(8): 3030–3040
|
50 |
Munusamy K, Sethia G, Patil D V, Somayajulu Rallapalli P B, Somani R S, Bajaj H C. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies. Chemical Engineering Journal, 2012, 195: 359–368
|
51 |
Cmarik G E, Kim M, Cohen S M, Walton K S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012, 28(44): 15606–15613
|
52 |
Khare P, Kumar A. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: Process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Applied Water Science, 2012, 2(4): 317–326
|
53 |
Roy R K. A Primer on the Taguchi Method. 2nd ed. Michigan: Society of Manufacturing Engineers, 2010, 1–304
|
54 |
Fowlkes W Y, Creveling C M. Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development. 1st ed. Boston: Addison-Wesley Publishing Company, 1995, 1–403
|
55 |
Aarti A, Bhadauria S, Nanoti A, Dasgupta S, Divekar S, Gupta P, Chauhan R. [Cu3(BTC)2]-polyethyleneimine: An efficient MOF composite for effective CO2 separation. RSC Advances, 2016, 6(95): 93003–93009
|
56 |
Sun B, Kayal S, Chakraborty A. Study of HKUST (copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 2014, 76: 419–427
|
57 |
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
|
58 |
Rouquerol J, Llewellyn P, Rouquerol F. Is the BET equation applicable to microporous adsorbents. Studies in Surface Science and Catalysis, 2007, 160(7): 49–56
|
59 |
Armstrong M R, Shan B, Cheng Z, Wang D, Liu J, Mu B. Adsorption and diffusion of carbon dioxide on the metal-organic framework CuBTB. Chemical Engineering Science, 2017, 167: 10–17
|
60 |
Do D D. Adsorption Analysis: Equilibria and Kinetics: (With CD Containing Computer Matlab Programs). 1st ed. London: Imperial College Press, 1998, 1–916
|
61 |
Keller J, Dreisbach F, Rave H, Staudt R, Tomalla M. Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents. Adsorption, 1999, 5(3): 199–214
|
62 |
Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
|
63 |
Liang Z, Marshall M, Chaffee A L. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy & Fuels, 2009, 23(5): 2785–2789
|
64 |
Yan X, Komarneni S, Zhang Z, Yan Z. Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014, 183: 69–73
|
65 |
Liu Y, Ghimire P, Jaroniec M. Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of Colloid and Interface Science, 2019, 535: 122–132
|
66 |
Ye S, Jiang X, Ruan L W, Liu B, Wang Y M, Zhu J F, Qiu L G. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 2013, 179: 191–197
|
67 |
Salehi S, Anbia M. High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy & Fuels, 2017, 31(5): 5376–5384
|
/
〈 | 〉 |