Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling
Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi
Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling
Cu3(BTC)2, a common type of metal organic framework (MOF), was synthesized through electrochemical route for CO2 capture and its separation from N2. Taguchi method was employed for optimization of key parameters affecting the synthesis of Cu3(BTC)2. The results indicated that the optimum synthesis conditions with the highest CO2 selectivity can be obtained using 1 g of ligand, applied voltage of 25 V, synthesis time of 2 h, and electrode length of 3 cm. The single gas sorption capacity of the synthetized microstructure Cu3(BTC)2 for CO2 (at 298 K and 1 bar) was a considerable value of 4.40 mmol·g−1. The isosteric heat of adsorption of both gases was calculated by inserting temperature-dependent form of Langmuir isotherm model in the Clausius-Clapeyron equation. The adsorption of CO2/N2 binary mixture with a concentration ratio of 15/85 vol-% was also studied experimentally and the result was in a good agreement with the predicted value of IAST method. Moreover, Cu3(BTC)2 showed no considerable loss in CO2 adsorption after six sequential cycles. In addition, artificial neural networks (ANNs) were also applied to predict the separation behavior of CO2/N2 mixture by MOFs and the results revealed that ANNs could serve as an appropriate tool to predict the adsorptive selectivity of the binary gas mixture in the absence of experimental data.
Cu3(BTC)2 electrochemical synthesis / CO2 adsorption / Taguchi optimization / ANN modeling
[1] |
Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A. Climate Change 2001: The Scientific Basis. New York: The Press Syndicate of the University of Cambridge, 2001, 417–471
|
[2] |
Monastersky R. Global carbon dioxide levels near worrisome milestone. Nature, 2013, 497(7447): 13–14
CrossRef
Google scholar
|
[3] |
Wu X, Liu M, Shi R, Yu X, Liu Y. CO2 adsorption/regeneration kinetics and regeneration properties of amine functionalized SBA-16. Journal of Porous Materials, 2018, 25(4): 1219–1227
CrossRef
Google scholar
|
[4] |
Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265
CrossRef
Google scholar
|
[5] |
Aaron D, Tsouris C. Separation of CO2 from flue gas: A review. Separation Science and Technology, 2005, 40(1-3): 321–348
CrossRef
Google scholar
|
[6] |
Belmabkhout Y, Guillerm V, Eddaoudi M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chemical Engineering Journal, 2016, 296: 386–397
CrossRef
Google scholar
|
[7] |
Lee S Y, Park S J. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 2015, 23: 1–11
CrossRef
Google scholar
|
[8] |
Andirova D, Cogswell C F, Lei Y, Choi S. Effect of the structural constituents of metal organic frameworks on carbon dioxide capture. Microporous and Mesoporous Materials, 2016, 219: 276–305
CrossRef
Google scholar
|
[9] |
Witoon T, Chareonpanich M. Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Materials Letters, 2012, 81: 181–184
CrossRef
Google scholar
|
[10] |
Li Q, Yang J, Feng D, Wu Z, Wu Q, Park S S, Ha C S, Zhao D. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3(9): 632–642
CrossRef
Google scholar
|
[11] |
Witoon T. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics, 2012, 137(1): 235–245
CrossRef
Google scholar
|
[12] |
Liu Y, Wang Z U, Zhou H C. Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases. Science and Technology, 2012, 2(4): 239–259
|
[13] |
Liu J, Tian J, Thallapally P K, McGrail B P. Selective CO2 capture from flue gas using metal-organic frameworks—a fixed bed study. Journal of Physical Chemistry C, 2012, 116(17): 9575–9581
CrossRef
Google scholar
|
[14] |
Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012, 12(7): 3489–3498
CrossRef
Google scholar
|
[15] |
Wu H, Simmons J M, Liu Y, Brown C M, Wang X S, Ma S, Peterson V K, Southon P D, Kepert C J, Zhou H C, Yildirim T, Zhou W. Metal-organic frameworks with exceptionally high methane uptake: Where and how is methane stored? Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(17): 5205–5214
CrossRef
Google scholar
|
[16] |
Xiang S, Zhou W, Gallegos J M, Liu Y, Chen B. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. Journal of the American Chemical Society, 2009, 131(34): 12415–12419
CrossRef
Google scholar
|
[17] |
Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
CrossRef
Google scholar
|
[18] |
Dietzel P D, Johnsen R E, Blom R, Fjellvåg H. Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(8): 2389–2397
CrossRef
Google scholar
|
[19] |
Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871
CrossRef
Google scholar
|
[20] |
Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley P, Morris R, Zecchina A. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007, 9(21): 2676–2685
CrossRef
Google scholar
|
[21] |
Van Assche T R, Campagnol N, Muselle T, Terryn H, Fransaer J, Denayer J F. On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 224: 302–310
CrossRef
Google scholar
|
[22] |
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 2006, 16(7): 626–636
CrossRef
Google scholar
|
[23] |
Yang H, Du H, Zhang L, Liang Z, Li W. Electrosynthesis and electrochemical mechanism of Zn-based Metal-organic Frameworks. International Journal of Electrochemical Science, 2015, 10: 1420–1433
|
[24] |
Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Microporous and Mesoporous Materials, 2013, 168: 57–64
CrossRef
Google scholar
|
[25] |
Kumar R S, Kumar S S, Kulandainathan M A. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochemistry Communications, 2012, 25: 70–73
CrossRef
Google scholar
|
[26] |
Kundu A, Gupta B S, Hashim M, Redzwan G. Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 2015, 105: 420–427
CrossRef
Google scholar
|
[27] |
Syed-Hassan S S A, Zaini M S M. Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design. Korean Journal of Chemical Engineering, 2016, 33(8): 2502–2512
CrossRef
Google scholar
|
[28] |
Pirzadeh K, Ghoreyshi A A, Rahimnejad M, Mohammadi M. Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean Journal of Chemical Engineering, 2018, 35(4): 974–983
CrossRef
Google scholar
|
[29] |
Yen H Y, Lin C P. Adsorption of Cd (II) from wastewater using spent coffee grounds by Taguchi optimization. Desalination and Water Treatment, 2016, 57(24): 11154–11161
CrossRef
Google scholar
|
[30] |
Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A. Taguchi optimization approach for Pb (II) and Hg (II) removal from aqueous solutions using modified mesoporous carbon. Journal of Hazardous Materials, 2011, 192(3): 1046–1055
CrossRef
Google scholar
|
[31] |
Roy R K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. New York: John Wiley & Sons, 2001, 1–531
|
[32] |
Engin A B, Özdemir Ö, Turan M, Turan A Z. Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method. Journal of Hazardous Materials, 2008, 159(2): 348–353
CrossRef
Google scholar
|
[33] |
Sadrzadeh M, Mohammadi T. Sea water desalination using electrodialysis. Desalination, 2008, 221(1-3): 440–447
CrossRef
Google scholar
|
[34] |
Esfandiari K, Mahdavi A R, Ghoreyshi A A, Jahanshahi M. Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@CuBTC composite for enhanced hydrogen uptake. International Journal of Hydrogen Energy, 2018, 43(13): 6654–6665
CrossRef
Google scholar
|
[35] |
Phadke M S. Quality Engineering Using Robust Design. 1st ed. New Jersy: Prentice Hall PTR, 1995, 1–250
|
[36] |
Myers A, Prausnitz J M. Thermodynamics of mixed-gas adsorption. AIChE Journal. American Institute of Chemical Engineers, 1965, 11(1): 121–127
CrossRef
Google scholar
|
[37] |
Daliakopoulos I N, Coulibaly P, Tsanis I K. Groundwater level forecasting using artificial neural networks. Journal of Hydrology (Amsterdam), 2005, 309(1-4): 229–240
CrossRef
Google scholar
|
[38] |
Gardner M W, Dorling S. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 1998, 32(14-15): 2627–2636
CrossRef
Google scholar
|
[39] |
Refaeilzadeh P, Tang L, Liu H. Cross-validation. In: Liu L, Özsu M T, eds. Encyclopedia of Database Systems. Boston: Springer, 2009, 532–538
|
[40] |
Esfandiari K, Ghoreyshi A A, Jahanshahi M. Using artificial neural network and ideal adsorbed solution theory for predicting the CO2/CH4 selectivities of metal-organic frameworks: A comparative study. Industrial & Engineering Chemistry Research, 2017, 56(49): 14610–14622
CrossRef
Google scholar
|
[41] |
Lapedes A S, Farber R M. How neural nets work. In: Anderson D Z, ed. Neural Information Processing Systems. New York: AIP Press, 1988, 442–456
|
[42] |
Panchal G, Ganatra A, Kosta Y, Panchal D. Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 2011, 3(2): 332–337
CrossRef
Google scholar
|
[43] |
Lin R G, Lin R B, Chen B. A microporous metal-organic framework for selective C2H2 and CO2 separation. Journal of Solid State Chemistry, 2017, 252: 138–141
CrossRef
Google scholar
|
[44] |
Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S. Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 2012, 94: 124–130
CrossRef
Google scholar
|
[45] |
Mishra P, Edubilli S, Mandal B, Gumma S. Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and Mesoporous Materials, 2013, 169: 75–80
CrossRef
Google scholar
|
[46] |
Wu Z, Wei S, Wang M, Zhou S, Wang J, Wang Z, Guo W, Lu X.CO2 capture and separation over N2 and CH4 in nanoporous MFM-300 (In, Al, Ga, and In-3N): insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28: 145–151
|
[47] |
McDonald T M, D’Alessandro D M, Krishna R, Long J R. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chemical Science (Cambridge), 2011, 2(10): 2022–2028
CrossRef
Google scholar
|
[48] |
Zhang Z, Xian S, Xia Q, Wang H, Li Z, Li J. Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(6): 2195–2206
CrossRef
Google scholar
|
[49] |
Mason J A, Sumida K, Herm Z R, Krishna R, Long J R. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science, 2011, 4(8): 3030–3040
CrossRef
Google scholar
|
[50] |
Munusamy K, Sethia G, Patil D V, Somayajulu Rallapalli P B, Somani R S, Bajaj H C. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies. Chemical Engineering Journal, 2012, 195: 359–368
CrossRef
Google scholar
|
[51] |
Cmarik G E, Kim M, Cohen S M, Walton K S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012, 28(44): 15606–15613
CrossRef
Google scholar
|
[52] |
Khare P, Kumar A. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: Process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Applied Water Science, 2012, 2(4): 317–326
CrossRef
Google scholar
|
[53] |
Roy R K. A Primer on the Taguchi Method. 2nd ed. Michigan: Society of Manufacturing Engineers, 2010, 1–304
|
[54] |
Fowlkes W Y, Creveling C M. Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development. 1st ed. Boston: Addison-Wesley Publishing Company, 1995, 1–403
|
[55] |
Aarti A, Bhadauria S, Nanoti A, Dasgupta S, Divekar S, Gupta P, Chauhan R. [Cu3(BTC)2]-polyethyleneimine: An efficient MOF composite for effective CO2 separation. RSC Advances, 2016, 6(95): 93003–93009
CrossRef
Google scholar
|
[56] |
Sun B, Kayal S, Chakraborty A. Study of HKUST (copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 2014, 76: 419–427
CrossRef
Google scholar
|
[57] |
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
CrossRef
Google scholar
|
[58] |
Rouquerol J, Llewellyn P, Rouquerol F. Is the BET equation applicable to microporous adsorbents. Studies in Surface Science and Catalysis, 2007, 160(7): 49–56
CrossRef
Google scholar
|
[59] |
Armstrong M R, Shan B, Cheng Z, Wang D, Liu J, Mu B. Adsorption and diffusion of carbon dioxide on the metal-organic framework CuBTB. Chemical Engineering Science, 2017, 167: 10–17
CrossRef
Google scholar
|
[60] |
Do D D. Adsorption Analysis: Equilibria and Kinetics: (With CD Containing Computer Matlab Programs). 1st ed. London: Imperial College Press, 1998, 1–916
|
[61] |
Keller J, Dreisbach F, Rave H, Staudt R, Tomalla M. Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents. Adsorption, 1999, 5(3): 199–214
CrossRef
Google scholar
|
[62] |
Yang Q, Zhong C, Chen J F. Computational study of CO2 storage in metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112(5): 1562–1569
CrossRef
Google scholar
|
[63] |
Liang Z, Marshall M, Chaffee A L. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy & Fuels, 2009, 23(5): 2785–2789
CrossRef
Google scholar
|
[64] |
Yan X, Komarneni S, Zhang Z, Yan Z. Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014, 183: 69–73
CrossRef
Google scholar
|
[65] |
Liu Y, Ghimire P, Jaroniec M. Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of Colloid and Interface Science, 2019, 535: 122–132
CrossRef
Google scholar
|
[66] |
Ye S, Jiang X, Ruan L W, Liu B, Wang Y M, Zhu J F, Qiu L G. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 2013, 179: 191–197
CrossRef
Google scholar
|
[67] |
Salehi S, Anbia M. High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy & Fuels, 2017, 31(5): 5376–5384
CrossRef
Google scholar
|
/
〈 | 〉 |